[1] LOUIS DN,PERRY A,WESSELING P,et al.The 2021 WHO classification of tumors of the central nervous system:a summary[J].Neuro Oncol,2021,23(8):1231-1251.
[2] NABORS LB,PORTNOW J,AHLUWALIA M,et al.Central nervous system cancers,version 3.2020,NCCN clinical practice guidelines in oncology[J].J Natl Compr Canc Netw,2020,18(11):1537-1570.
[3] CHAND P,AMIT S,GUPTA R,et al.Errors,limitations,and pitfalls in the diagnosis of central and peripheral nervous system lesions in intraoperative cytology and frozen sections[J].J Cytol Indian Acad Cytol,2016,33:93.
[4] 张利文,方梦捷,臧亚丽,等.影像组学的发展与应用[J].中华放射学杂志,2017,51(001):75-77.
ZHANG LW,FANG MJ,ZANG YL,et al.Development and application of radiomics[J].Chinese Journal of Radiology,2017,51(001):75-77.
[5] STRUGAR J,ROTHBART D,HARRINGTON W,et al.Vascular permeability factor in brain metastases:correlation with vasogenic brain edema and tumor angiogenesis[J].Journal of Neurosurgery,1994,81(4):560-566.
[6] LAMBIN P,LEIJENAAR RTH,DEIST TM,et al.Radiomics:the bridge between medical imaging and personalized medicine[J].Nat Rev Clin Oncol,2017,14(12):749-762.
[7] GILLIES RJ,KINAHAN PE,HRICAK H.Radiomics:Images are more than pictures,they are data[J].Radiology,2015,278:563-577.
[8] LAW M,CHA S,KNOPP EA,et al.High-grade gliomas and solitary metastases:Differentiation by using perfusion and pro-ton spectroscopic MR imaging[J].Radiology,2002,222:715-721.
[9] HYUNGJIN K,MIN PC,MYUNGHEE L,et al.Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors:analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability[J].Plos One,2016,11(10):e0164924.
[10] HUYNH E,COROLLER TP,NARAYAN V,et al.CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer[J].Radiotherapy & Oncology,2016,2:258-266.
[11] 刘哲,刘小彤,尹畅畅,等.T2WI机器学习在鉴别高级别胶质瘤和脑单发转移瘤中的应用[J].西安交通大学学报(医学版),2019,040(005):794-799.
LIU Z,LIU XT,YIN CC,et al.Application of T2WI machine learning in the identification of high-grade gliomas and brain solitary metastases[J].Journal of Xi'an Jiaotong University(Medical Sciences),2019,040(005):794-799.
[12] 尹浩霖,李冬宝,蒋宇,等.高通量纹理分析鉴别脑内单发转移瘤和高级别胶质瘤[J].中华肿瘤杂志,2018,40(11):841-846.
YIN HL,LI DB,JIANG Y,et al.High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas[J].Chinese Journal of Oncology,2018,40(11):841-846.
[13] CSUTAK C,TEFAN PA,LENGHEL LM,et al.Differentiating high-grade gliomas from brain metastases at magnetic resonance:The role of texture analysis of the peritumoral zone[J].Brain Sci,2020,10(9):638.
[14] MRGINEAN L,TEFAN PA,LEBOVICI A,et al.CT in the differentiation of gliomas from brain metastases:The radiomics analysis of the peritumoral zone[J].Brain Sci,2022,12(1):109.
[15] 王敏红,冯湛.瘤周水肿常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值[J].中华放射学杂志,2018,52(10):756-760.
WANG MH,FENG Z.The value of conventional MRI texture analysis of peritumoral edema in differentiating glioblastoma from solitary metastatic tumor[J].Chinese Journal of Radiology,2018,52(10):756-760.