|Table of Contents|

Research progress of metabolic checkpoints regulating immune function of T cell in the tumor microenvironment

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2024 05
Page:
967-972
Research Field:
Publishing date:

Info

Title:
Research progress of metabolic checkpoints regulating immune function of T cell in the tumor microenvironment
Author(s):
YANG Li1MEI Tingting1MA Yuliang2CHEN Jing1YAN Jun3SUI Bowen3
1.Heilongjiang University of Chinese Medicine,Heilongjiang Harbin 150000,China;2.Heilongjiang University of Technology,Heilongjiang Jixi 158100,China;3.The First Affiliated Hospital,Heilongjiang University of Chinese Medicine,Heilongjiang Harbin 150000,China.
Keywords:
metabolic checkpointimmune checkpointtumor microenvironmentimmunotherapy
PACS:
R730.51
DOI:
10.3969/j.issn.1672-4992.2024.05.032
Abstract:
The emergence of immune checkpoint inhibitors has redefined the treatment of advanced tumors and brought hope to patients.However,many tumors have shown significant mechanisms of resistance to checkpoint suppression and other immunotherapies,resulting in consistently low response rates or even superprogression in some patients.Targeting metabolic pathways to reshape the tumor microenvironment is expected to revitalize anti-tumor immune responses and may have synergistic effects with existing immunotherapies,according to the emerging field of immunometabolism.This article focuses on a series of effects of regulating T cell metabolism through metabolic checkpoint in tumor immunotherapy,aiming to provide new ideas for tumor immunotherapy.

References:

[1]HU C,XUAN Y,ZHANG X,et al.Immune cell metabolism and metabolic reprogramming[J].Mol Biol Rep,2022,49:9783-9795.
[2]ROSTAMIAN H,KHAKPOOR-KOOSHEH M,JAFARZADEH L,et al.Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions[J].BMC Cancer,2022,22(1):39.
[3]LEONE RD,POWELL JD.Metabolism of immune cells in cancer[J].Nat Rev Cancer,2020,20(9):516-531.
[4]BECKERMANN KE,DUDZINSKI SO,RATHMELL JC.Dysfunctional T cell metabolism in the tumor microenvironment[J].Cytokine Growth Factor Rev,2017,35:7-14.

[5]DEY P,KIMMELMAN AC,DEPINHO RA.Metabolic codependencies in the tumor microenvironment[J].Cancer Discov,2021,11(5):1067-1081.
[6]YANG T,YAN X,CAO Y,et al.Meta-analysis of glutamine on immune function and post-operative complications of patients with colorectal cancer[J].Front Nutr,2021,8:765809.
[7]JOHNSON MO,WOLF MM,MADDEN MZ,et al.Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J].Cell,2018,175(7):1780-1795.
[8]FU Q,XU L,WANG Y,et al.Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion[J].Eur Urol,2019,75(5):752-763.
[9]EDWARDS DN,NGWA VM,RAYBUCK AL,et al.Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer[J].J Clin Invest,2021,131(4):e140100.
[10]LEONE RD,ZHAO L,ENGLERT JM,et al.Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J].Science,2019,366(6468):1013-1021.
[11]HUANG M,XIONG D,PAN J,et al.Targeting glutamine metabolism to enhance immunoprevention of EGFR-driven lung cancer[J].Adv Sci (Weinh),2022,9(26):e2105885.
[12]WATSON MJ,VIGNALI P,MULLETT SJ,et al.Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J].Nature,2021,591(7851):645-651.
[13]WANG L,WU Q,LIU J,et al.Lactic acid inhibits iNKT cell functions via a phosphodiesterase-5 dependent pathway[J].Biochem Biophys Res Commun,2021,547:9-14.
[14]GU J,ZHOU J,CHEN Q,et al.Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells[J].Cell Rep,2022,39(12):110986.
[15]FENG Q,LIU Z,YU X,et al.Lactate increases stemness of CD8+T cells to augment anti-tumor immunity[J].Nat Commun,2022,13(1):4981.
[16]PEREZ-CASTRO L,GARCIA R,VENKATESWARAN N,et al.Tryptophan and its metabolites in normal physiology and cancer etiology[J].FEBS J,2021,10:16245.
[17]DING X,BIN P,WU W,et al.Tryptophan metabolism,regulatory T cells, and inflammatory bowel disease:A mini review[J].Mediators Inflamm,2020,3(2020):9706140.
[18]GOLD LT,MASSON GR.GCN2:roles in tumour development and progression[J].Biochem Soc Trans,2022,50(2):737-745.
[19]QIN R,ZHAO C,WANG CJ,et al.Tryptophan potentiates CD8(+) T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation[J].J Immunother Cancer,2021,9(7):e002840.
[20]GOETZMAN ES,PROCHOWNIK EV.The role for Myc in coordinating glycolysis,oxidative phosphorylation,glutaminolysis,and fatty acid metabolism in normal and neoplastic tissues[J].Front Endocrinol (Lausanne),2018,9:129.
[21]YOSHIDA GJ.Beyond the warburg effect:N-Myc contributes to metabolic reprogramming in cancer cells[J].Front Oncol,2020,10:791.
[22]LIU YN,YANG JF,HUANG DJ,et al.Hypoxia induces mitochondrial defect that promotes t cell exhaustion in tumor microenvironment through MYC-regulated pathways[J].Front Immunol,2020,11:1906.
[23]LI J,PAN J,LIU Y,et al.3-Bromopyruvic acid regulates glucose metabolism by targeting the c-Myc/TXNIP axis and induces mitochondria-mediated apoptosis in TNBC cells[J].Exp Ther Med,2022,24(2):520.
[24]DANG EV,BARBI J,YANG HY,et al.Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1[J].Cell,2011,146(5):772-784.
[25]LIU X,LIU L,CHEN K,et al.Huaier shows anti-cancer activities by inhibition of cell growth,migration and energy metabolism in lung cancer through PI3K/AKT/HIF-1α pathway[J].J Cell Mol Med,2021,25(4):2228-2237.
[26]HUANG YY,JIANG HX,SHI QY,et al.miR-145 inhibits th9 cell differentiation by suppressing activation of the PI3K/AKT/mTOR/p70S6K/HIF-1α pathway in malignant ascites from liver cancer[J].Onco Targets Ther,2020,13:3789-3800.
[27]XIA L,SUN J,XIE S,et al.PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer[J].Cell Prolif,2020,53(11):e12918.
[28]XU K,YIN N,PENG M,et al.Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity[J].Science,2021,371(6527):405-410.
[29]HAJJAR S,NATHAN N,JOSEPH J,et al.Foxo3a tempers excessive glutaminolysis in activated T cells to prevent fatal gut inflammation in the murine IL-10(-/-) model of colitis[J].Cell Death Differ,2022,29(3):585-599.
[30]ZHANG H,ZHANG Y,PAN J,et al.iNKT subsets differ in their developmental and functional requirements on Foxo1[J].Proc Natl Acad Sci USA,2021,118(46):e2105950118.
[31]BI E,MA X,LU Y,et al.Foxo1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of T(H)9 cells programmed by IL-7[J].Sci Signal,2017,10(500):e9741.
[32]QIU W,WANG B,GAO Y,et al.Targeting histone deacetylase 6 reprograms interleukin-17-producing helper T cell pathogenicity and facilitates immunotherapies for hepatocellular carcinoma[J].Hepatology,2020,71(6):1967-1987.
[33]YAN Y,ZHOU XE,XU HE,et al.Structure and physiological regulation of AMPK[J].Int J Mol Sci,2018,19(11):3543.
[34]HE J,SHANGGUAN X,ZHOU W,et al.Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development[J].Nat Commun,2021,12(1):4371.
[35]LI Y,LI G,ZHANG J,et al.The dual roles of human γδ T cells:Anti-tumor or tumor-promoting[J].Front Immunol,2020,11:619954.
[36]HARLY C,JOYCE SP,DOMBLIDES C,et al.Human γδ T cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2[J].Sci Immunol,2021,6(61):e9010.
[37]XU W,WU Y,WANG L,et al.Autoantibody against β(1)-adrenoceptor promotes the differentiation of natural regulatory T cells from activated CD4(+) T cells by up-regulating AMPK-mediated fatty acid oxidation[J].Cell Death Dis,2019,10(3):158.
[38]GAO Y,PIVINEN P,TRIPATHI S,et al.Inactivation of AMPK leads to attenuation of antigen presentation and immune evasion in lung adenocarcinoma[J].Clin Cancer Res,2022,28(1):227-237.
[39]POKHREL RH,ACHARYA S,AHN JH,et al.AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway[J].Mol Cancer,2021,20(1):133.
[40]TIMILSHINA M,YOU Z,LACHER SM,et al.Activation of mevalonate pathway via LKB1 is essential for stability of T(reg) cells[J].Cell Rep,2019,27(10):2948-2961.
[41]BAIXAULI F,PILETIC K,PULESTON DJ,et al.An LKB1-mitochondria axis controls T(H)17 effector function[J].Nature,2022,610(7932):555-561.
[42]PANDIT M,TIMILSHINA M,CHANG JH.LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1[J].J Mol Med (Berl),2021,99(8):1139-1150.
[43]PONS-TOSTIVINT E,LUGAT A,FONTENAU JF,et al.STK11/LKB1 modulation of the immune response in lung cancer:From biology to therapeutic impact[J].Cells,2021,10(11):3129.
[44]BEST SA,GUBSER PM,SETHUMADHAVAN S,et al.Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer[J].Cell Metab,2022,34(6):874-887.
[45]WAICKMAN AT,POWELL JD.mTOR,metabolism,and the regulation of T-cell differentiation and function[J].Immunol Rev,2012,249(1):43-58.
[46]ZHAO R,SONG Y,WANG Y,et al.PD-1/PD-L1 blockade rescue exhausted CD8+ T cells in gastrointestinal stromal tumours via the PI3K/AKT/mTOR signalling pathway[J].Cell Prolif,2019,52(3):e12571.
[47]LIU X,YIN M,DONG J,et al.Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR[J].Acta Pharm Sin B,2021,11(10):3134-3149.
[48]LIU X,ZHAO Y,WU X,et al.A novel strategy to fuel cancer immunotherapy:targeting glucose metabolism to remodel the tumor microenvironment[J].Front Oncol,2022,12:931104.

Memo

Memo:
黑龙江省应用技术研究与开发计划项目(编号:GA19C109);黑龙江省博士后基金资助项目(编号:LBH-Z18251);黑龙江省中医药管理局科研项目(编号:ZHY2022-155);黑龙江省哈尔滨市技术创新人才研究专项资金(编号:2017RAQXJ186)
Last Update: 2024-01-30