|Table of Contents|

Research progress on anti-tumor effect of CD8+T cells regulated by cholesterol metabolism

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2022 04
Page:
736-739
Research Field:
Publishing date:

Info

Title:
Research progress on anti-tumor effect of CD8+T cells regulated by cholesterol metabolism
Author(s):
BAO Shengchuan1YAN Shuguang12LI Jingtao3WEI Hailiang4WANG Pengli5WEI Hui5
1.Shaanxi University of Chinese Medicine College of Basic Medicine,Shaanxi Xianyang 712046,China;2.Shaanxi Provincial Key Laboratory of Gastrointestinal Diseases,Shaanxi Xianyang 712046,China;3.Department of Infectious Disease;4.Department of General Surgery;5.Department of Oncology,Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine,Shaanxi Xianyang 712046,China.
Keywords:
CD8+T cellcholesteroltumor
PACS:
R730
DOI:
10.3969/j.issn.1672-4992.2022.04.039
Abstract:
CD8+T cells,also known as cytotoxic T lymphocytes or CTL,can directly kill pathogen infected cells and cancer cells.However,CD8+T cells often lose their effector function,and then limit the anti-tumor immunity in tumor microenvironment.Therefore,how to reactivate the anti-tumor efficacy of CD8+T cells is a problem that needs to be solved.Recent studies have found that cholesterol metabolism plays an important role in tumors.Cholesterol contributes to the accumulation of T cell receptors and the formation of immune synapses,and the effector function of T cells is also affected by its metabolism.Tumor cells can use cholesterol metabolism to induce T cell depletion and escape T cell immune surveillance.At present,the screening of new molecules and strategies for cholesterol metabolism and CD8+T cellular immune effect has become a hot spot in the field of tumor research.This paper summarizes the important studies on cholesterol and CD8+T cells,and expounds the mechanism of cholesterol metabolism and its anti-tumor activity in CD8+T cells,so as to provide reference for follow-up research.

References:

[1]JOYCE JA,FEARON DT.T cell exclusion,immune privilege,and the tumor microenvironment[J].Science,2015,348(6230):74-80.
[2]MELLMAN I,COUKOS G,DRANOFF G.Cancer immunotherapy comes of age[J].Nature,2011,480(7378):480-489.
[3]ZECH T,EJSING CS,GAUS K,et al.Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling[J].EMBO J,2009,28(5):466-476.
[4]SHI X,BI Y,YANG W,et al.Ca2+ regu,lates T-cell receptor activation by modulating the charge property of lipids[J].Nature,2013,493(7430):111-115.
[5]MOLNR E,SWAMY M,HOLZER M,et al.Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering[J].J Biol Chem,2012,287(51):42664-42674.
[6]CHYU KY,LIO WM,DIMAYUGA PC,et al.Cholesterol lowering modulates T cell function in vivo and in vitro[J].PLoS One,2014,9(3):e92095.
[7]KIDANI Y,ELSAESSER H,HOCK MB,et al.Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J].Nat Immunol,2013,14(5):489-499.
[8] SILVENTE-POIROT S,POIROT M.Cholesterol metabolism and cancer:the good,the bad and the ugly[J].Curr Opin Pharmacol,2012,12(6):673-676.
[9] MURAI T.Cholesterol lowering:role in cancer prevention and treatment[J].Biol Chem,2015,396(1):1-11.
[10] RADISAUSKAS R,KUZMICKIENE I,MILINAVICIENE E,et al.Hypertension,serum lipids and cancer risk:A review of epidemiological evidence[J].Medicina (Kaunas),2016,52(2):89-98.
[11] MULLEN PJ,YU R,LONGO J,et al.The interplay between cell signalling and the mevalonate pathway in cancer[J].Nat Rev Cancer,2016,16(11):718-731.
[12] LI N,ZHOU ZS,SHEN Y,et al.Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice[J].Hepatology,2017,65(6):1936-1947.
[13] LYU J,YANG EJ,HEAD SA,et al.Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth[J].Cancer Lett,2017,409:91-103.
[14] COSTA GA,DE SOUZA SB,DA SILVA TEIXEIRA LR,et al.Tumor cell cholesterol depletion and V-ATPase inhibition as an inhibitory mechanism to prevent cell migration and invasiveness in melanoma[J].Biochim Biophys Acta Gen Subj,2018,1862(3):684-691.
[15] WANG Y,LIU C,HU L.Cholesterol regulates cell proliferation and apoptosis of colorectal cancer by modulating miR-33a-PIM3 pathway[J].Biochem Biophys Res Commun,2019,511(3):685-692.
[16]FARHOOD B,NAJAFI M,MORTEZAEE K.CD8+ cytotoxic T lymphocytes in cancer immunotherapy:A review[J].J Cell Physiol,2019,234(6):8509-8521.
[17]MCKINNEY EF,SMITH KG.T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion[J].Curr Opin Immunol,2016,43:74-80.
[18]WHERRY EJ,KURACHI M.Molecular and cellular insights into T cell exhaustion[J].Nat Rev Immunol,2015,15(8):486-499.
[19]ZHANG L,ROMERO P.Metabolic control of CD8+T cell fate decisions and antitumor immunity[J].Trends Mol Med,2018,24(1):30-48.
[20]YANG W,BAI Y,XIONG Y,et al.Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism[J].Nature,2016,531(7596):651-655.
[21]PAL P,GANDHI H,GIRIDHAR R,et al.ACAT inhibitors:the search for novel cholesterol lowering agents[J].Mini Rev Med Chem,2013,13(8):1195-1219.
[22]HUTTUNEN HJ,KOVACS DM.ACAT as a drug target for Alzheimer's disease[J].Neurodegener Dis,2008,5(3-4):212-214.
[23]LI M,YANG Y,WEI J,et al.Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8+T cells[J].Nanomedicine,2018,14(8):2541-2550.
[24]WHERRY EJ.T cell exhaustion[J].Nat Immunol,2011,12(6):492-499.
[25]CALLAHAN MK,POSTOW MA,WOLCHOK JD.Targeting T cell co-receptors for cancer therapy[J].Immunity,2016,44(5):1069-1078.
[26]RIBAS A,WOLCHOK JD.Cancer immunotherapy using checkpoint blockade[J].Science,2018,359(6382):1350-1355.
[27]CUBILLOS-RUIZ JR,SILBERMAN PC,RUTKOWSKI MR,et al.ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis[J].Cell,2015,161(7):1527-1538.
[28]TANG CH,RANATUNGA S,KRISS CL,et al.Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival[J].J Clin Invest,2014,124(6):2585-2598.
[29]MA X,BI E,LU Y,et al.Cholesterol induces CD8+T cell exhaustion in the tumor microenvironment[J].Cell Metab,2019,30(1):143-156.
[30]SILVERSTEIN RL,FEBBRAIO M.CD36,a scavenger receptor involved in immunity,metabolism,angiogenesis,and behavior[J].Sci Signal,2009,2(72):re3.
[31]MA X,XIAO L,LIU L,et al.CD36-mediated ferroptosis dampens intratumoral CD8+T cell effector function and impairs their antitumor ability[J].Cell Metab,2021,33(5):1001-1012.
[32]KIM K,LEE JM,YU YS,et al.RORα2 requires LSD1 to enhance tumor progression in breast cancer[J].Sci Rep,2017,7(1):11994.
[33]JETTEN AM,JOO JH.Retinoid-related orphan receptors (RORs):Roles in cellular differentiation and development[J].Adv Dev Biol,2006,16:313-355.
[34]CHOI WS,LEE G,SONG WH,et al.The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis[J].Nature,2019,566(7743):254-258.
[35]LEE IK,SONG H,KIM H,et al.RORα regulates cholesterol metabolism of CD8+T cells for anticancer immunity[J].Cancers (Basel),2020,12(7):1733.
[36]RAAL FJ,HONARPOUR N,BLOM DJ,et al.Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B):a randomised,double-blind,placebo-controlled trial[J].Lancet,2015,385(9965):341-350.
[37]STEIN EA,HONARPOUR N,WASSERMAN SM,et al.Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody,AMG 145,in homozygous familial hypercholesterolemia[J].Circulation,2013,128(19):2113-2120.
[38]LIU X,BAO X,HU M,et al.Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer[J].Nature,2020,588(7839):693-698.
[39]YUAN J,CAI T,ZHENG X,et al.Potentiating CD8+T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling[J].Protein Cell,2021,12(4):240-260.

Memo

Memo:
National Natural Science Foundation of China(No.81603612);国家自然科学基金(编号:81603612);陕西中医药大学学科创新团队建设项目(编号:2019-YL05)
Last Update: 1900-01-01