|Table of Contents|

Research progress of CT radiomics in spatiotemporal heterogeneity of gastric cancer

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2025 04
Page:
701-711
Research Field:
Publishing date:

Info

Title:
Research progress of CT radiomics in spatiotemporal heterogeneity of gastric cancer
Author(s):
ZHONG Xiaoyu1WANG Yueling12LIU Jiarang1FAN Jiaqi1XU Tian1HE Siyi1HUANG Benhao1HUANG Chen1
1.Department of Gastrointestinal Surgery,Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200080,China;2.Wuxi School of Medicine,Jiangnan University,Jiangsu Wuxi 214122,China.
Keywords:
CTradiomicsgastric cancertumor heterogeneity
PACS:
R735.2
DOI:
10.3969/j.issn.1672-4992.2025.04.024
Abstract:
Gastric cancer is a highly heterogeneous malignant tumor.Despite significant progress in radiotherapy,chemotherapy,and immunotherapy for gastric cancer in recent years,the clinical benefits for gastric cancer patients are limited due to high tumor heterogeneity.In recent years,with the development of multiomics research and high-throughput sequencing technology,more and more studies have shown that the heterogeneity of gastric cancer at the temporal and spatial levels has important clinical significance,which is expected to provide indicators and methods for early diagnosis and treatment of gastric cancer.The emerging CT radiomics can provide multi-stage and multi-site imaging information for gastric cancer.Through tumor segmentation,feature extraction,and model establishment,it is expected to provide new,non-invasive,reliable,and efficient indicators for the diagnosis and treatment of gastric cancer.Therefore,this review considers and summarizes the current status of research on gastric cancer heterogeneity from the perspective of spatiotemporal heterogeneity,elaborates on the development trend of CT radiomics in the study of gastric cancer spatiotemporal heterogeneity,in order to deepen the understanding of gastric cancer spatiotemporal heterogeneity,promote precise medical treatment of gastric cancer,and ultimately improve the survival and prognosis of gastric cancer patients.

References:

[1]HAN B,ZHENG R,ZENG H,et al.Cancer incidence and mortality in China,2022[J].J Natl Cancer Cent,2024,4(1):47-53.
[2]GULLO I,CARNEIRO F,OLIVEIRA C,et al.Heterogeneity in gastric cancer:From pure morphology to molecular classifications[J].Pathobiology,2017,85(1-2):50-63.
[3]WANG X,FAN J.Spatiotemporal molecular medicine:A new era of clinical and translational medicine[J].Clin Transl Med,2021,11(1):294.
[4]KWEE RM,KWEE TC.Modern imaging techniques for preoperative detection of distant metastases in gastric cancer[J].World J Gastroenterol,2015,21(37):10502-10509.
[5]HE X,LIU X,ZUO F,et al.Artificial intelligence-based multi-omics analysis fuels cancer precision medicine[J].Semin Cancer Biol,2023,88:187-200.
[6]USHIJIMA T,CLARK SJ,TAN P.Mapping genomic and epigenomic evolution in cancer ecosystems[J].Science,2021,373(6562):1474-1479.
[7]MARUSYK A,POLYAK K.Tumor heterogeneity:Causes and consequences[J].Biochim Biophys Acta,2010,1805(1):105-117.
[8]MEACHAM CE,MORRISON SJ.Tumour heterogeneity and cancer cell plasticity[J].Nature,2013,501(7467):328-337.
[9]TAN IB,IVANOVA T,LIM KH,et al.Intrinsic subtypes of gastric cancer,based on gene expression pattern,predict survival and respond differently to chemotherapy[J].Gastroenterology,2011,141(2):476-485.e1-11.
[10]BEDARD PL,HANSEN AR,RATAIN MJ,et al.Tumour heterogeneity in the clinic[J].Nature,2013,501(7467):355-364.
[11]HANAHAN D,WEINBERG ROBERT A.Hallmarks of cancer:The next generation[J].Cell,2011,144(5):646-674.
[12]ZHOU Z,WU S,LAI J,et al.Identification of trunk mutations in gastric carcinoma:a case study[J].BMC Med Genomics,2017,10(1):49.
[13]CAMARGO MC,ANDERSON WF,KING JB,et al.Divergent trends for gastric cancer incidence by anatomical subsite in US adults[J].Gut,2011,60(12):1644-1649.
[14]HUANG KL,MASHL RJ,WU Y,et al.Pathogenic germline variants in 10,389 adult cancers[J].Cell,2018,173(2):355-370.
[15]ZHANG P,YANG M,ZHANG Y,et al.Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer[J].Cell Rep,2019,27(6):1934-1947.
[16]KANEDA A,FEINBERG AP.Loss of imprinting of IGF2:A common epigenetic modifier of intestinal tumor risk[J].Cancer Res,2005,65(24):11236-11240.
[17]MATSUSAKA K,KANEDA A,NAGAE G,et al.Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes[J].Cancer Res,2011,71(23):7187-7197.
[18]VECCHI M,NUCIFORO P,ROMAGNOLI S,et al.Gene expression analysis of early and advanced gastric cancers[J].Oncogene,2007,26(29):4284-4294.
[19]MA Z,FANG M,HUANG Y,et al.CT-based radiomics signature for differentiating Borrmann type Ⅳ gastric cancer from primary gastric lymphoma[J].Eur J Radiol,2017,91:142-147.
[20]ZHANG Q,YU T,ZHAO Z,et al.Temporal heterogeneity of HER2 expression in metastatic gastric cancer:A case report[J].World Journal of Surgical Oncology,2022,20(1):157.
[21]JIN MZ,JIN WL.The updated landscape of tumor microenvironment and drug repurposing[J].Signal Transduct Target Ther,2020,5(1):166.
[22]BHAT AV,HORA S,PAL A,et al.Stressing the(Epi) genome:Dealing with reactive oxygen species in cancer[J].Antioxid Redox Signal,2018,29(13):1273-1292.
[23]NOWELL PC.The clonal evolution of tumor cell populations[J].Science,1976,194(4260):23-28.
[24]ROCKEN C,AMALLRAJA A,HALSKE C,et al.Multiscale heterogeneity in gastric adenocarcinoma evolution is an obstacle to precision medicine[J].Genome Med,2021,13(1):177.
[25]BOGER C,KRUGER S,BEHRENS HM,et al.Epstein-Barr virus-associated gastric cancer reveals intratumoralheterogeneity of PIK3CA mutations[J].Ann Oncol,2017,28(5):1005-1014.
[26]SUNDAR R,LIU DH,HUTCHINS GG,et al.Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination[J].Gut,2021,70(10):1823-1832.
[27]HOFMANN M,STOSS O,SHI D,et al.Assessment of a HER2 scoring system for gastric cancer:results from a validation study[J].Histopathology,2008,52(7):797-805.
[28]YANG J,LUO H,LI Y,et al.Intratumoral heterogeneity determines discordant results of diagnostic tests for human epidermal growth factor receptor(HER) 2 in gastric cancer specimens[J].Cell Biochem Biophys,2012,62(1):221-228.
[29]KANAYAMA K,IMAI H,YONEDA M,et al.Significant intratumoral heterogeneity of human epidermal growth factor receptor 2 status in gastric cancer:A comparative study of immunohistochemistry,FISH,and dual-color in situ hybridization[J].Cancer Sci,2016,107(4):536-542.
[30]Cancer Genome Atlas Research Network.Comprehensive molecular characterization of gastric adenocarcinoma[J].Nature,2014,513(7517):202-209.
[31]TAN P,YEOH KG.Genetics and molecular pathogenesis of gastric adenocarcinoma[J].Gastroenterology,2015,149(5):1153-1162.
[32]MATHIAK M,WARNEKE VS,BEHRENS HM,et al.Clinicopathologic caracteristics of microsatellite instable gastric carcinomas revisited:Urgent need for standardization[J].Appl Immunohistochem Mol Morphol,2017,25(1):12-24.
[33]PECTASIDES E,STACHLER MD,DERKS S,et al.Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma[J].Cancer Discov,2018,8(1):37-48.
[34]VON LOGA K,WOOLSTON A,PUNTA M,et al.Extreme intratumour heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer[J].Nat Commun,2020,11(1):139.
[35]CARNEIRO F,SEIXAS M,SOBRINHO-SIMOES M.New elements for an updated classification of the carcinomas of the stomach[J].Pathology-Research and Practice,1995,191(6):571-584.
[36]STELZNER S,EMMRICH P.The mixed type in Laurén's classification of gastric carcinoma.Histologic description and biologic behavior[J].General & Diagnostic Pathology,1997,143(1):39-48.
[37]LAMBIN P,RIOS-VELAZQUEZ E,LEIJENAAR R,et al.Radiomics:extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.
[38]ELIZABETH G,DAVIDE C.Physics nobel scooped by machine-learning pioneers[J/OL].Nature,2024,634(10):523-524[2024-10-21].https://www.nobelprize.org/prizes/physics/2024/advanced-information.DOI:10.1038/d41586-024-03213-8.
[39]GILLIES RJ,KINAHAN PE,HRICAK H.Radiomics:Images are more than pictures,they are data[J].Radiology,2016,278(2):563-577.
[40]HUANG Y,LIU Z,HE L,et al.Radiomics signature:A potential biomarker for the prediction of disease-free survival in early-stage(I or II) non-small cell lung cancer[J].Radiology,2016,281(3):947-957.
[41]AERTS HJWL,VELAZQUEZ ER,LEIJENAAR RTH,et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J].Nature Communications,2014,5(1):4006.
[42]ESTEVA A,KUPREL B,NOVOA RA,et al.Dermatologist-level classification of skin cancer with deep neural networks[J].Nature,2017,542(7639):115-118.
[43]POLAN DF,BRADY SL,KAUFMAN RA.Tissue segmentation of computed tomography images using a Random Forest algorithm:a feasibility study[J].Phys Med Biol,2016,61(17):6553-6569.
[44]SHINOHARA T,OHYAMA S,YAMAGUCHI T,et al.Clinical value of multidetector row computed tomography in detecting lymph node metastasis of early gastric cancer[J].Eur J Surg Oncol,2005,31(7):743-748.
[45]MACHLOWSKA J,BAJ J,SITARZ M,et al.Gastric cancer:Epidemiology,risk factors,classification,genomic characteristics and treatment strategies[J].Int J Mol Sci,2020,21(11):4012.
[46]KUMAR V,GU Y,BASU S,et al.Radiomics:the process and the challenges[J].Magn Reson Imaging,2012,30(9):1234-1248.
[47]LAMBIN P,LEIJENAAR RTH,DEIST TM,et al.Radiomics:the bridge between medical imaging and personalized medicine[J].Nature Reviews Clinical Oncology,2017,14(12):749-762.
[48]AFSHAR P,MOHAMMADI A,PLATANIOTIS KN,et al.From handcrafted to deep-learning-based cancer radiomics:Challenges and opportunities[J].IEEE Signal Processing Magazine,2019,36(4):132-160.
[49]MUTLAG W,ALI S,MOSAD Z,et al.Feature extraction methods:A review[J].Journal of Physics:Conference Series,2020,1591(1):012028.
[50]TUCERYAN M,JAIN AK.Handbook of pattern recognition and computer vision[M].Singapore:World Scientific,1993:235-276.
[51]GHALATI MK,NUNES A,FERREIRA H,et al.Texture analysis and its applications in biomedical imaging:A survey[J].IEEE Reviews in Biomedical Engineering,2022,15(3):222-246.
[52]SARATKAR S,RAUT R,THUTE T,et al.Review of machine learning and deep learning techniques for medical image analysis[J].2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things(ICoICI),2024,1(1):1437-1443.
[53]WANG XX,DING Y,WANG SW,et al.Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer[J].Cancer Imaging,2020,20(1):83.
[54]SUN Z,JIN L,ZHANG S,et al.Preoperative prediction for lauren type of gastric cancer:A radiomics nomogram analysis based on CT images and clinical features[J].J Xray Sci Technol,2021,29(4):675-686.
[55]LI Y,CHENG Z,GEVAERT O,et al.A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer[J].Chin J Cancer Res,2020,32(1):62-71.
[56]WANG Y,YU Y,HAN W,et al.CT radiomics for distinction of human epidermal growth factor receptor 2 negative gastric cancer[J].Acad Radiol,2021,28(3):86-92.
[57]YANG J,WANG L,QIN J,et al.Multi-view learning for lymph node metastasis prediction using tumor and nodal radiomics in gastric cancer[J].Phys Med Biol,2022,67(5):7.
[58]YANG L,SUN J,YU X,et al.Diagnosis of serosal invasion in gastric adenocarcinoma by dual-energy CT radiomics:Focusing on localized gastric wall and peritumoral radiomics features[J].Front Oncol,2022,12(1):848425.
[59]DONG D,FANG MJ,TANG L,et al.Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer:an international multicenter study[J].Ann Oncol,2020,31(7):912-920.
[60]FAN L,LI J,ZHANG H,et al.Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables[J].Abdom Radiol(NY),2022,47(4):1209-1222.
[61]TAN X,YANG X,HU S,et al.Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer:A radiomics nomogram analysis based on CT images and clinicopathological features[J].J Xray Sci Technol,2023,31(1):49-61.
[62]ZHENG H,ZHENG Q,JIANG M,et al.Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer[J].Eur J Radiol,2022,154(1):110393.
[63]甄思雨,梁长华,王笑天,等.基于临床、能谱CT及影像组学构建胃癌神经侵犯的预测模型[J].中国医学影像学杂志,2024,32(4):339-345,347. ZHEN SY,LIANG CH,WANG XT,et al.Prediction model of perineural invasion of gastric cancer based on clinical,spectral CT and radiomics[J].Chinese Journal of Medical Imaging,2018,32(4):339-345,347.
[64]CHEN X,ZHUANG Z,PEN L,et al.Intratumoral and peritumoral CT-based radiomics for predicting the microsatellite instability in gastric cancer[J].Abdominal Radiology,2024,49(5):1363-1375.
[65]ONOYAMA T,ISHIKAWA S,ISOMOTO H.Gastric cancer and genomics:review of literature[J].Journal of Gastroenterology,2022,57(8):505-516.
[66]WANG ZN,XU HM,JIANG L,et al.Expression of survivin in primary and metastatic gastric cancer cells obtained by laser capture microdissection[J].World J Gastroenterol,2004,10(21):3094-3098.
[67]LIU S,SHI H,JI C,et al.Preoperative CT texture analysis of gastric cancer:correlations with postoperative TNM staging[J].Clin Radiol,2018,73(8):756.
[68]LIU S,LIANG W,HUANG P,et al.Multi-modal analysis for accurate prediction of preoperative stage and indications of optimal treatment in gastric cancer[J].Radiol Med,2023,128(5):509-519.
[69]DONG D,TANG L,LI ZY,et al.Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer[J].Ann Oncol,2019,30(3):431-438.
[70]SHI S,MIAO Z,ZHOU Y,et al.Radiomics signature for predicting postoperative disease-free survival of patients with gastric cancer:development and validation of a predictive nomogram[J].Diagn Interv Radiol,2022,28(5):441-449.
[71]ZHENG H,ZHENG Q,JIANG M,et al.Evaluation the benefits of additional radiotherapy for gastric cancer patients after D2 resection using CT based radiomics[J].Radiol Med,2023,128(6):679-688.
[72]ZWANENBURG A,VALLIERES M,ABDALAH MA,et al.The image biomarker standardization initiative:Standardized quantitative radiomics for high-throughput image-based phenotyping[J].Radiology,2020,295(2):328-338.
[73]LI J,QIU Z,ZHANG C,et al.ITHscore:comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features[J].European Radiology,2023,33(2):893-903.
[74]SHI Z,HUANG X,CHENG Z,et al.MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J].Radiology,2023,308(1):222830.
[75]LIU Z,DUAN T,ZHANG Y,et al.Radiogenomics:a key component of precision cancer medicine[J].British Journal of Cancer,2023,129(5):741-753.
[76]JIN Y,XU Y,LI Y,et al.Integrative radiogenomics approach for risk assessment of postoperative and adjuvant chemotherapy benefits for gastric cancer patients[J].Front Oncol,2021,11(1):755271.
[77]LIU H,WANG Y,LIU Y,et al.Contrast-enhanced computed tomography-based radiogenomics analysis for predicting prognosis in gastric cancer[J].Front Oncol,2022,12(1):882786.

Memo

Memo:
上海交通大学医学院高峰高原计划(编号:20194125)
Last Update: 1900-01-01