|Table of Contents|

Advances of artificial intelligence in histological diagnosis of colorectal cancer and its precancerous lesions

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2025 02
Page:
327-334
Research Field:
Publishing date:

Info

Title:
Advances of artificial intelligence in histological diagnosis of colorectal cancer and its precancerous lesions
Author(s):
WU Zhifeng123YAO Liwen123WU Lianlian123ZENG Zhi4YU Honggang123
1.Department of Gastroenterology,Renmin Hospital of Wuhan University,Hubei Wuhan 430060,China;2.Key Laboratory of Hubei Provincial for Digestive Diseases,Hubei Wuhan 430060,China;3.Hubei Clinical Research Center for Minimally Invasive Diagnosis and Treatment of Digestive Diseases,Hubei Wuhan 430060,China;4.Department of Pathology,Renmin Hospital of Wuhan University,Hubei Wuhan 430060,China.
Keywords:
colorectal cancerprecancerous lesionscolorectal polyphistological diagnosisartificial intelligence
PACS:
R735.3
DOI:
10.3969/j.issn.1672-4992.2025.02.025
Abstract:
The early detection and treatment of colorectal cancer (CRC) and its precancerous lesions by colonoscopy is the key to reduce the mortality rate of CRC.However,accurate pathological assessment is also an important component of CRC screening,and by diagnosing the nature of the lesion and recommending an appropriate follow-up strategy,the overuse of surveillance colonoscopy or the accident of interval CRC can be avoided.The combination of whole slide imaging (WSI) and artificial intelligence (AI) provides an unique tool and algorithm for the field of pathology to help optimize diagnosis,guide treatment,and predict prognosis.WSI provides an opportunity for the development of AI-based diagnostic tools to achieve more accurate and repeatable diagnostic results through the application of computational pathology,which is expected to have a profound impact on clinical practice.This paper reviews the progress of AI in the histological diagnosis of CRC and its precancerous lesions at home and abroad.

References:

[1] SIEGEL RL,WAGLE NS,CERCEK A,et al.Colorectal cancer statistics,2023[J].CA:A Cancer Journal for Clinicians,2023,73(3):233-254.
[2] DEKKER E,TANIS PJ,VLEUGELS JLA,et al.Colorectal cancer[J].Lancet(London,England),2019,394(10207):1467-1480.
[3] ROSEWEIR AK,MCMILLAN DC,HORGAN PG,et al.Colorectal cancer subtypes:Translation to routine clinical pathology[J].Cancer Treat Rev,2017,57:1-7.
[4] TURNER JK,WILLIAMS GT,MORGAN M,et al.Interobserver agreement in the reporting of colorectal polyp pathology among bowel cancer screening pathologists in Wales[J].Histopathology,2013,62(6):916-924.
[5] HANNA MG,ARDON O,REUTER VE,et al.Integrating digital pathology into clinical practice[J].Modern Pathology,2022,35(2):152-164.
[6] KLEPPE A,SKREDE OJ,DE RAEDT S,et al.Designing deep learning studies in cancer diagnostics[J].Nat Rev Cancer,2021,21(3):199-211.
[7] MERCAN C,AKSOY S,MERCAN E,et al.Multi-instance multi-label learning for multi-class classification of whole slide breast histopathology images[J].IEEE Transactions on Medical Imaging,2018,37(1):316-325.
[8] JIN L,SHI F,CHUN Q,et al.Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers[J].Neuro Oncol,2021,23(1):44-52.
[9] 罗季平,唐博,周桃,等.人工智能辅助评分联合剪切波弹性成像在乳腺结节鉴别诊断中的应用[J].现代肿瘤医学,2022,30(23):4325-4329.LUO Jiping,TANG Bo,ZHOU Tao,et al.Application of artificial intelligence assisted scoring combined with shear wave elastography in the differential diagnosis of breast nodules[J].Modern Oncology,2022,30(23):4325-4329.
[10] 王超,郭英,崔磊,等.深度学习辅助病理诊断领域的研究进展[J].现代肿瘤医学,2024,32(19):3791-3795.WANG Chao,GUO Ying,CUI Lei,et al.Research progress in the field of deep learning assisted pathological diagnosis[J].Modern Oncology,2024,32(19):3791-3795.
[11] 王卓,吴祺,王花丽,等.人工智能技术在乳腺癌病理诊断中的应用进展[J].现代肿瘤医学,2023,31(01):174-177.WANG Zhuo,WU Qi,WANG Huali,et al.Application progress of artificial intelligence technology in pathological diagnosis of breast cancer[J].Modern Oncology,2023,31(01):174-177.
[12] COUDRAY N,OCAMPO PS,SAKELLAROPOULOS T,et al.Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J].Nature Medicine,2018,24(10):1559-1567.
[13] SMITS LJH,VINK-BORGER E,VAN LIJNSCHOTEN G,et al.Diagnostic variability in the histopathological assessment of advanced colorectal adenomas and early colorectal cancer in a screening population[J].Histopathology,2022,80(5):790-798.
[14] ZHOU C,JIN Y,CHEN Y,et al.Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning[J].Computerized Medical Imaging and Graphics,2021,88:101861.
[15] HO C,ZHAO Z,CHEN XF,et al.A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer[J].Scientific Reports,2022,12(1):2222.
[16] WANG KS,YU G,XU C,et al.Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence[J].BMC Medicine,2021,19(1):76.
[17] YU G,SUN K,XU C,et al.Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images[J].Nature Communications,2021,12(1):6311.
[18] ONDER D,SARIOGLU S,KARACALI B.Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning[J].Micron,2013,47:33-42.
[19] GUPTA P,HUANG Y,SAHOO PK,et al.Colon tissues classification and localization in whole slide images using deep learning[J].Diagnostics(Basel,Switzerland),2021,11(8):1398.
[20] XU Y,JIANG L,HUANG S,et al.Dual resolution deep learning network with self-attention mechanism for classification and localisation of colorectal cancer in histopathological images[J].Journal of Clinical Pathology,2023,76(8):524-530.
[21] BEN HAMIDA A,DEVANNE M,WEBER J,et al.Weakly supervised learning using attention gates for colon cancer histopathological image segmentation[J].Artificial Intelligence in Medicine,2022,133:102407.
[22] TRIVIZAKIS E,IOANNIDIS GS,SOUGLAKOS I,et al.A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis[J].Scientific Reports,2021,11(1):15546.
[23] KIM H,YOON H,THAKUR N,et al.Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain[J].Scientific Reports,2021,11(1):22520.
[24] NGUYEN HG,BLANK A,DAWSON HE,et al.Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods[J].Scientific Reports,2021,11(1):2371.
[25] BOKHORST JM,NAGTEGAAL ID,FRAGGETTA F,et al.Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images[J].Scientific Reports,2023,13(1):8398.
[26] QAISER T,TSANG YW,TANIYAMA D,et al.Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features[J].Medical Image Analysis,2019,55:1-14.
[27] BILAL M,TSANG YW,ALI M,et al.Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal:a retrospective cohort study[J].The Lancet Digital Health,2023,5(11):e786-e797.
[28] NAGTEGAAL ID,ODZE RD,KLIMSTR AD,et al.WHO classification of tumours of the digestive system[M].Lyon:WHO Classification of Tumours Editorial Board,2019:158-159.
[29] AWAN R,SIRINUKUNWATTANA K,EPSTEIN D,et al.Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images[J].Scientific Reports,2017,7(1):16852.
[30] ZHOU P,CAO Y,LI M,et al.HCCANet:histopathological image grading of colorectal cancer using CNN based on multichannel fusion attention mechanism[J].Scientific Reports,2022,12(1):15103.
[31] CHUANG WY,CHEN CC,YU WH,et al.Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free whole-slide images[J].Modern Pathology,2021,34(10):1901-1911.
[32] PAI RK,HARTMAN D,SCHAEFFER DF,et al.Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters[J].Histopathology,2021,79(3):391-405.
[33] BENSON AB,VENOOK AP,AL-HAWARY MM,et al.Rectal cancer,version 2.2022,NCCN clinical practice guidelines in oncology[J].Journal of the National Comprehensive Cancer Network,2022,20(10):1139-1167.
[34] WAGNER SJ,REISENBUCHLER D,WEST NP,et al.Transformer-based biomarker prediction from colorectal cancer histology:A large-scale multicentric study[J].Cancer Cell,2023,41(9):1650-1661.e4.
[35] CAO R,YANG F,MA SC,et al.Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in colorectal cancer[J].Theranostics,2020,10(24):11080-11091.
[36] SAILLARD C,DUBOIS R,TCHITA O,et al.Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides[J].Nature Communications,2023,14(1):6695.
[37] YAMASHITA R,LONG J,LONGACRE T,et al.Deep learning model for the prediction of microsatellite instability in colorectal cancer:a diagnostic study[J].The Lancet Oncology,2021,22(1):132-141.
[38] KIM K,LEE K,CHO S,et al.PAIP 2020:Microsatellite instability prediction in colorectal cancer[J].Medical Image Analysis,2023,89:102886.
[39] JIANG W,MEI WJ,XU SY,et al.Clinical action ability of triaging DNA mismatch repair deficient colorectal cancer from biopsy samples using deep learning[J].EBioMedicine,2022,81:104120.
[40] Cancer Genome Atlas Network.Comprehensive molecular characterization of human colon and rectal cancer[J].Nature,2012,487(7407):330-337.
[41] SHIMADA Y,OKUDA S,WATANABE Y,et al.Histopathological characteristics and artificial intelligence for predicting tumor mutational burden-high colorectal cancer[J].Journal of Gastroenterology,2021,56(6):547-559.
[42] HUANG K,LIN B,LIU J,et al.Predicting colorectal cancer tumor mutational burden from histopathological images and clinical information using multi-modal deep learning[J].Bioinformatics(Oxford,England),2022,38(22):5108-5115.
[43] BILAL M,RAZA SEA,AZAM A,et al.Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images:a retrospective study[J].The Lancet Digital Health,2021,3(12):e763-e772.
[44] SCHIRRIS Y,GAVVES E,NEDERLOF I,et al.DeepSMILE:Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer[J].Medical Image Analysis,2022,79:102464.
[45] NIEHUES JM,QUIRKE P,WEST NP,et al.Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning:A retrospective multi-centric study[J].Cell Reports Medicine,2023,4(4):100980.
[46] BOSCH SL,TEERENSTRA S,DE WILT JH,et al.Predicting lymph node metastasis in pT1 colorectal cancer:a systematic review of risk factors providing rationale for therapy decisions[J].Endoscopy,2013,45(10):827-834.
[47] SHAUKAT A,KALTENBACH T,DOMINITZ JA,et al.Endoscopic recognition and management strategies for malignant colorectal polyps:Recommendations of the US multi-society task force on colorectal cancer[J].Gastroenterology,2020,159(5):1916-1934.e2.
[48] 中华医学会消化内镜学分会结直肠学组.中国结直肠癌及癌前病变内镜诊治共识(2023,广州)[J].中华消化内镜杂志,2023,40(7):505-520.Colorectal Group,Digestive Endoscopy Branch of Chinese Medical Association.Expert consensus on endoscopic diagnosis and treatment for colorectal cancer and precancerous lesions in China(2023,Guangzhou)[J].Chin J Dig Endosc,2023,40(7):505-520.
[49] KOJIMA M,PUPPA G,KIRSCH R,et al.Blood and lymphatic vessel invasion in pT1 colorectal cancer:an international concordance study[J].Journal of Clinical Pathology,2015,68(8):628-632.
[50] TAKAMATSU M,YAMAMOTO N,KAWACHI H,et al.Prediction of early colorectal cancer metastasis by machine learning using digital slide images[J].Comput Methods Programs Biomed,2019,178:155-161.
[51] KUDO SE,ICHIMASA K,VILLARD B,et al.Artificial intelligence system to determine risk of T1 colorectal cancer metastasis to lymph node[J].Gastroenterology,2021,160(4):1075-1084.e2.
[52] SONG JH,HONG Y,KIM ER,et al.Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens;prediction of lymph node metastasis in T1 colorectal cancer[J].Journal of Gastroenterology,2022,57(9):654-666.
[53] KIEHL L,KUNTZ S,HOHN J,et al.Deep learning can predict lymph node status directly from histology in colorectal cancer[J].European Journal of Cancer,2021,157:464-473.
[54] LIU H,ZHAO Y,YANG F,et al.Preoperative prediction of lymph node metastasis in colorectal cancer with deep learning[J].BME Frontiers,2022,2022:9860179.
[55] ZHAO K,LI Z,YAO S,et al.Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer[J].EBioMedicine,2020,61:103054.
[56] KATHER JN,KRISAM J,CHAROENTONG P,et al.Predicting survival from colorectal cancer histology slides using deep learning:A retrospective multicenter study[J].PLoS Medicine,2019,16(1):e1002730.
[57] SKREDE OJ,DE RAEDT S,KLEPPE A,et al.Deep learning for prediction of colorectal cancer outcome:a discovery and validation study[J].Lancet(London,England),2020,395(10221):350-360.
[58] GALON J,COSTES A,SANCHEZ-CABO F,et al.Type,density,and location of immune cells within human colorectal tumors predict clinical outcome[J].Science(New York,NY),2006,313(5795):1960-1964.

[59] REICHLING C,TAIEB J,DERANGERE V,et al.Artificial intelligence-guided tissue analysis combined with immune infiltrate assessment predicts stage Ⅲ colon cancer outcomes in PETACC08 study[J].Gut,2020,69(4):681-690.
[60] FOERSCH S,GLASNER C,WOERL AC,et al.Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer[J].Nature Medicine,2023,29(2):430-439.
[61] NAGTEGAAL ID,ODZE RD,KLIMSTRA D,et al.The 2019 WHO classification of tumours of the digestive system[J].Histopathology,2020,76(2):182-188.
[62] SONG Z,YU C,ZOU S,et al.Automatic deep learning-based colorectal adenoma detection system and its similarities with pathologists[J].BMJ Open,2020,10(9):e036423.
[63] WEI JW,SURIAWINATA AA,VAICKUS LJ,et al.Evaluation of a deep neural network for automated classification of colorectal polyps on histopathologic slides[J].JAMA Network Open,2020,3(4):e203398.
[64] NASIR-MOIN M,SURIAWINATA AA,REN B,et al.Evaluation of an artificial intelligence-augmented digital system for histologic classification of colorectal polyps[J].JAMA Network Open,2021,4(11):e2135271.
[65] CAI H,FENG X,YIN R,et al.MIST:multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas[J].The Journal of Pathology,2023,259(2):125-135.
[66] PERLO D,TARTAGLIONE E,BERTERO L,et al.Dysplasia grading of colorectal polyps through convolutional neural network analysis of whole slide images[C]//Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis(MICAD 2021),Singapore,F,2022:325-334.
[67] WU Z,YAO L,LIU W,et al.Development and validation of a deep learning-based histologic diagnosis system for diagnosing colorectal sessile serrated lesions[J].American Journal of Clinical Pathology,2023,160(4):394-403.
[68] ANNESE V,BEAUGERIE L,EGAN L,et al.European evidence-based consensus:Inflammatory bowel disease and malignancies[J].J Crohns Colitis,2015,9(11):945-965.
[69] NADEEM MS,KUMAR V,AL-ABBASI FA,et al.Risk of colorectal cancer in inflammatory bowel diseases[J].Semin Cancer Biol,2020,64:51-60.
[70] 国家消化系统疾病临床医学研究中心(上海),中华医学会消化内镜学分会,中国抗癌协会肿瘤内镜专业委员会,等.中国结直肠癌癌前病变和癌前状态处理策略专家共识[J].中华消化内镜杂志,2022,39(1):1-18.National Clinical Research Center for Digestive Diseases (Shanghai),Chinese Society of Digestive Endoscopology,Cancer Endoscopy Professional Committee of China Anti Cancer Association,et al.Expert consensus on management strategies for precancerous lesions and conditions of colorectal cancer in China[J].Chin J Dig Endosc,2022,39(1):1-18.
[71] MATALKA II,AL-OMARI FA,SALAMA RM,et al.A novel approach for quantitative assessment of mucosal damage in inflammatory bowel disease[J].Diagn Pathol,2013,8:156.
[72] MOSSOTTO E,ASHTON JJ,COELHO T,et al.Classification of paediatric inflammatory bowel disease using machine learning[J].Scientific Reports,2017,7(1):2427.
[73] NOGUCHI T,ANDO T,EMOTO S,et al.Artificial intelligence program to predict p53 mutations in ulcerative colitis-associated cancer or dysplasia[J].Inflamm Bowel Dis,2022,28(7):1072-1080.
[74] GUPTA S,LIEBERMAN D,ANDERSON JC,et al.Recommendations for follow-up after colonoscopy and polypectomy:A consensus update by the us multi-society task force on colorectal cancer[J].The American Journal of Gastroenterology,2020,115(3):415-434.
[75] HAN B,ZHENG R,ZENG H,et al.Cancer incidence and mortality in China,2022[J].Journal of the National Cancer Center,2024,4(1):47-53.
[76] SHAUKAT A,LICHTENSTEIN DR,SOMERS SC,et al.Computer-aided detection improves adenomas per colonoscopy for screening and surveillance colonoscopy:A randomized trial[J].Gastroenterology,2022,163(3):732-741.
[77] WANG P,BERZIN TM,GLISSEN BROWN JR,et al.Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates:a prospective randomised controlled study[J].Gut,2019,68(10):1813-1819.
[78] U.S.Food and Drug Administration.FDA authorizes software that can help identify prostate cancer[Z].US;FDA,2021.https://bit.ly/2W2zH3g.

Memo

Memo:
National Natural Science Foundation of China(No.82202257);国家自然科学基金青年项目(编号:82202257);湖北省消化疾病微创诊治临床医学研究中心项目(编号:2022DCC004);武汉市人工智能示范应用场景项目(编号:2022YYCJ01);武汉大学人民医院交叉创新人才项目(编号:JCRCZN-2022-001)
Last Update: 1900-01-01