|Table of Contents|

Reaearch progress on the correlation between human recombined activated gene and hematological malignant diseases

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2024 21
Page:
4157-4162
Research Field:
Publishing date:

Info

Title:
Reaearch progress on the correlation between human recombined activated gene and hematological malignant diseases
Author(s):
TANG MantingLUO Wenfeng
Department of Hematology,Affiliated Hospital of North Sichuan Medical College,Sichuan Nanchong 637000,China.
Keywords:
RAGmyelodysplastic syndromesleukaemia lymphoma
PACS:
R733.7
DOI:
10.3969/j.issn.1672-4992.2024.21.026
Abstract:
The human recombination activating gene(RAG) is a critical gene involved in the development of the immune system and adaptive immune responses.It regulates the process of gene recombination,leading to receptor diversity of T and B cells.There have been reports indicating that the expression of human RAG can vary in different malignant blood disorders such as myelodysplastic syndromes,acute lymphocytic leukemia,and others.Abnormalities in the human RAG gene have been found to be associated with the occurrence,development,and prognosis of hematological malignancies.Exploring the correlation between human recombination activating gene and malignant blood disorders may provide theoretical foundations and directions for studying their pathogenesis,treatment,and prognosis.There is currently no comprehensive elucidation of the relationship between the RAG gene and malignant blood disorders.This article focuses on conducting a review of the correlation between the human RAG gene and myelodysplastic syndromes,leukemia,and lymphoma,aiming to provide new insights for the diagnosis and treatment of hematological malignancies.

References:

[1]ZHANG N,WU J,WANG Q,et al.Global burden of hematologic malignancies and evolution patterns over the past 30 years[J].Blood Cancer Journal,2023,13(1):82.
[2]SWANSON PC.The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterifi- cation steps of V(D)J recombination[J].Molecular Cell Biolchem,2001,21:449-458.
[3]SHIMAZAKIN,LIEBER MR.Histone methylation and V(D)J recombination[J].International Journal of Hematology,2014,100(3):230-237.
[4]SCHATZ DG,OETTINGER MA,BALTIMORE D.The V(D)J recombination activating gene,RAG-1 [J].Cell,1989 ,59(6):1035-1048.
[5]DESIDERIO S.Temporal and spatial regulatory functions of the V(D)J recombinase[J].Semin Immunol,2010,22:362-369.
[6]OETTINGER MA,SCHATZ DG,GORKA C,et al.RAG-1 and RAG-2,adjacent genes that synergistically activate V(D)J recombination[J].Science,1990,248(4962):1517-1523.
[7]SCHATZ DG,SWANSON PC.V(D)J recombination:mechanisms of initiation[J].Annual Review of Genetics,2011,45:167-202.
[8]QIU JX,KALE SB,YARNELL SCHULTZ H,et al.Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination[J].Molecular Cell,2001,7(1):77-87.
[9]DIFILIPPANTONIO MJ,MCMAHAN CJ,EASTMAN QM,et al.RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination[J].Cell,1996 87(2):253-262.
[10]KIRKHAM CM,BOYES J.Genome instability triggered by the V(D)J recombination by-product[J].Molecular Cell Oncology,2019,6(4):1610323.
[11]KVPPERS R.Mechanisms of B-cell lymphoma pathogenesis[J].Nat Rev Cancer,2005,5(4):251-262.
[12]ROMMEL PC,OLIVEIRA TY,NUSSENZWEIG MC,et al.RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks[J].Journal Of Experiment Medicine,2017,214(3):815-831.
[13]ALT FW,ZHANG Y,MENG FL,et al.Mechanisms of programmed DNA lesions and genomic instability in the immune system[J].Cell,2013,152(3):417-429.
[14]KVPPERS R,DALLA-FAVERA R.Mechanisms of chromosomal translocations in B cell lymphomas[J].Oncogene,2001,20(40):5580-5594.
[15] DELBRIDGE AR,PAN SH,VANDENBERG CJ,et al.RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice[J].Journal of Experiment Medicine.2016,213(10):2039-2048.
[16]ZHANG Z,ZHAO L,WEI X,et al.Integrated bioinformatic analysis of microarray data reveals shared gene signature between MDS and AML[J].Oncology Letters,2018,16(4):5147-5159.
[17]OU R,HUANG J,SHEN H,et al.Transcriptome analysis of CD34+ cells from myelodysplastic syndrome patients[J].Leukemia Research,2017,62:40-50.
[18]GOUGH SM,CHUNG YJ,APLAN PD.Depletion of cytotoxic T-cells does not protect NUP98-HOXD13 mice from myelodysplastic syndrome but reveals a modest tumor immunosurveillance effect[J].PLoS One,2012,7(5):e36876.
[19]HUANG X,LIANG X,ZHU S,et al.Expression and clinical significance of RAG1 in myelodysplastic syndromes[J].Hematology,2022,27(1):1122-1129.
[20]APPERLEY JF.Chronic myeloid leukaemia[J].Lancet,2015,385(9976):1447-1459.
[21]ONIDA F,BALL G,KANTARJIAN HM,et al.Characteristics and outcome of patients with Philadelphia chromosome negative,bcr/abl negative chronic myelogenous leukemia[J].Cancer,2002,95(8):1673-1684.
[22]于晓卓,李世常,赵小惠,等.RAG重组酶介导Ph+慢性粒细胞白血病细胞伊马替尼耐药的机制[C]//中国免疫学会.第十一届全国免疫学学术大会分会场交流报告集.安徽,2016:117-118. YU XZ ,LI SC,ZHAO XH,et al.RAG recombinase mediates drug resistance in Ph+ chronic myeloid leukemia cells in imatinib[C]//Chinese Society of Immunology.The 11th National Conference on Immunology.Anhui,2016:117-118.
[23]KOSCHMIEDER S,VETRIE D.Epigenetic dysregulation in chronic myeloid leukaemia:A myriad of mechanisms and therapeutic options[J].Seminars In Cancer Biology,2018,51:180-197.
[24]WAANDERS E,SCHEIJEN B,VAN DER MEER LT,et al.The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution[J].PLoS Genetics,2012,8:e1002533.
[25]YUAN M,WANG Y,QIN M,et al.RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo[J].Cancer Science,2021,112(7):2679-2691.
[26]ADNAN AWAD,DUFVA O,LANEVSKI A,et al.RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes,transcriptional profiles,and drug responses[J].Leukemia,2021,35(4):1087-1099.
[27]THOMSON DW,SHAHRIN NH,WANG PPS,et al.Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia[J].Leukemia,2020,34(8):2051-2063.
[28]AREF S,KHALED N,MENSHAWY NE,et al.Clinical value of RAG1 expression and IKZF1 deletions in Philadelphia negative pediatric B cell precursor acute lymphoblastic leukemia [J].Pediatric Hematology Oncology,2020,37(5):380-389.
[29]CHEN D,CAMPONESCHI A,NORDLUND J,et al.RAG1 co-expression signature identifies ETV6-RUNX1-like B-cell precursor acute lymphoblastic leukemia in children[J].Cancer Medicine,2021,10(12):3997-4003.
[30]HAN Q,MA J,GU Y,et al.RAG1 high expression associated with IKZF1 dysfunction in adult B-cell acute lymphoblastic leukemia[J].Journal Cancer,2019,10(16):3842-3850.
[31]BHOJWANI D,PEI D,SANDLUND JT,et al.ETV6-RUNX1-positive childhood acute lymphoblastic leukemia:improved outcome with contemporary therapy[J].Leukemia,2012,26(2):265-270.
[32]PAPAEMMANUIL E,RAPADO I,LIY,et al.RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia[J].Nature Genetics,2014,46(2):116-125.
[33]KIRKHAM CM,SCOTT JNF,WANG X,et al.Cut-and-Run:A distinct mechanism by which V(D)J recombination causes genome instability[J].Molecular Cell,2019,74(3):584-597.
[34]GREAVES M.A causal mechanism for childhood acute lymphoblastic leukaemia[J].Nature Reviews Cancer,2018,18(8):471-484.
[35]HVBNER S,CAZZANIGA G,FLOHR T,et al.High incidence and unique features of antigen receptor gene rearrangements in TEL-AML1-positive leukemias[J].Leukemia,2003,18:84-91.
[36]WAANDERS E,SCHEIJEN B,VAN DERT MEER LT,et al.The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution[J].PLoS Genetics,2012,8:e1002533.
[37]ZHANG M,SWANSON PC.V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies[J].Journal Biological Chemistry,2008,283:6717-6727.
[38]ROSS ME,ZHOU X,SONG G,et al.Classification of pediatric acute lymphoblastic leukemia by gene expression profiling[J].Blood,2003,102:2951-2959.
[39]SWAMINATHAN S,KLEMML L,PARK E,et al.Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia[J].Nature Immunology,2015,16:766-774.
[40]RODRIGUEZ-HERNANDEZ G,HAUER J,MARTIN-LORENZO A,et al.Infection exposure promotes ETV6-RUNX1 precursor B-cell leukemia via impaired H3K4 demethylases[J].Cancer Research,2017,77(16):4365-4377.
[41]JAKOBCZYK H,JIANG Y,DEBAIZE L,et al.ETV6-RUNX1 and RUNX1 directly regulate RAG1 expression:one more step in the understanding of childhood B-cell acute lymphoblastic leukemia leukemogenesis[J].Leukemia,2022,36(2):549-554.
[42]姜艳.ETV6-RUNX1和RUNX1直接调控RAG1表达的机制研究[D].长春:吉林大学,2022. JANG Y.The mechanism by which ETV6-RUNX1and Runx1 directly regulate RAG1 expression was investigated[D].Changchun:Jilin University,2022.
[43]KUO TC,SCHLISSEL MS.Mechanisms controlling expression of the RAG locus during lymphocyte development[J].Current Opinion Immunology,2009,21(2):173-178.
[44]SILL H,GOLDMAN JM,CROSS NC.Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia[J].Blood,1995,85(8):2013-2016.
[45]KUMARI R,ROY U,DESAI S,et al.MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development[J].Cell Repoters,2021,36(2):109390.
[46]BAILEY MH,TOKHEIM C,PORTA-PARDO E,et al.Comprehensive characterization of cancer driver genes and mutations[J].Cell,2018,173(2):371-385.
[47]MAEHAMA T.PTEN:its deregulation and tumorigenesis[J].Biological Pharmaceutical Bulletin,2007,30(9):1624-1627.
[48]WU Y,ZHU H,WU H.PTEN in regulating hematopoiesis and leukemogenesis[J].Cold Spring Harbor Perspectives Medicine,2020,10(10):a036244.
[49]PALOMERO T,SULIS ML,CORTINA M,et al.Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia[J].Nature Medicine,2007,13(10):1203-1210.
[50]MENDES RD,SARMENTO LM,CANTE-BARRETT,et al.PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events [J].Blood,2014,124(4):567-578.
[51]DONG Y,GUO H,WANG D,et al.Genome-wide analysis identifies Rag1 and Rag2 as novel Notch1 transcriptional targets in thymocytes[J].Frontiers In Cell and Development Biology,2021,9:703338.
[52]KOURTI N,LAZARIS C,HOCKEMEYER K,et al.Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia[J].Nature Medicine,2018,24(8):1157-1166.
[53]RIZ I,HAWLEY TS,LUU TV,et al.TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells[J].Molecular Cancer,2010,9:181.
[54]HERMAN JG,BAYLIN SB.Gene silencing in cancer in association with promoter hypermethylation[J].New England Journal of Medicine,2003,349:2042-2054.
[55]NAMBIAR M,GOLDSMITH G,MOORTHY BT,et al.Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma[J].Nucleic Acids Research,2011,39(3):936-948.
[56]TSAI AG,LU H,RAGHAVAN SC,et al.Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity[J].Cell,2008,135(6):1130-1142.
[57]MAHOWALD GK,BARON JM,SLECKMAN BP.Collateral damage from antigen receptor gene diversification[J].Cell,2008,135:1009-1012.
[58]GOSTISSA M,ALT FW,CHIARLE R.Mechanisms that promote and suppress chromosomal translocations in lymphocytes[J].Annual Review Immunology,2011,29:319-350.
[59]NUSSENZWEIG A,NUSSENZWEIG MC.Origin of chromosomal translocations in lymphoid cancer[J].Cell,2010,141:27-38.
[60]ZHANG L,REYNOLDS TL,SHAN XC,et al.Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis[J].Immunity,2011,34(2):163-174.
[61]TSIMBOURI P,DROTAR ME,COY JL,et al.bcl-xL and RAG genes are induced and the response to IL-2 enhanced in EmuEBNA-1 transgenic mouse lymphocytes[J].Oncogene,2002,21(33):5182-5187.
[62]PARANJAPE AM,DESAI SS,NISHANA M,et al .Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers[J].PLoS Genetics,2022,18(10):e1010421.
[63]BENHAMOU D,LABI V,GETAHUN A,et al.The c-Myc/miR17-92/PTEN axis tunes PI3K activity to control expression of recombination activating genes in early B cell development[J].Frontiers In Immunology,2018,9:2715.
[64]FENG M,YANG K,WANG J,et al.First report of FARSA in the regulation of cell cycle and survival in mantle cell lymphoma cells via PI3K-AKT and FOXO1-RAG1 axes[J].International Journal of Molecular Sciences,2023,24(2):1608.
[65]YUAN L,SUN L,YANG S,et al.B7-H6 is a new potential biomarker and therapeutic target of T-lymphoblastic lymphoma[J].Annals of Translational Medicine,2021,9(4):328.
[66]BIANCHI JJ,MURIGNEUX V,BEDORA-FAURE M,et al.Breakage-fusion-bridge events trigger complex genome rearrangements and amplifications in developmentally arrested T cell lymphomas[J].Cell Reports,2019,27(10):2847-2858.

Memo

Memo:
四川省教育厅自然科学一般项目 (编号:17ZB0167)
Last Update: 2024-09-30