[1]SIEGEL RL,GIAQUINTO AN,JEMAL A.Cancer statistics,2024[J].CA Cancer J Clin,2024,74(1):12-49.
[2]MILLER KD,NOGUEIRA L,MARIOTTO AB,et al.Cancer treatment and survivorship statistics,2019[J].CA:A Cancer Journal for Clinicians,2019,69(5):363-385.
[3]COSTEA M,ZLATE A,DURAND M,et al.Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system[J].Radiotherapy and Oncology,2022,177:61-70.
[4]DALY A,YAZID H,SOLAIMAN B,et al.Multiatlas-based segmentation of female pelvic organs:Application for computer-aided diagnosis of cervical cancer[J].International Journal of Imaging Systems and Technology,2021,31(1):302-312.
[5]GAMBACORTA MA,VALENTINI C,DINAPOLI N,et al.Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system[J].Acta Oncologica,2013,52(8):1676-1681.
[6]MOHAMMADI R,SHOKATIAN I,SALEHI M,et al.Deep learning-based auto-segmentation of organs at risk in high-dose rate brachytherapy of cervical cancer[J].Radiotherapy and Oncology,2021,159:231-240.
[7]全科润,柏朋刚,陈文娟,等.基于深度学习的宫颈癌放疗靶区及危及器官自动勾画研究[J].现代肿瘤医学,2022,30(20):3759-3762.
QUAN KR,BAI PG,CHEN WJ,et al.Automatic contouring of clinical target volume and organs at risk in radiotherapy for cervical cancer based on deep learning[J].Modern Oncology,2022,30(20):3759-3762.
[8]CAO Z,YU B,LEI B,et al.Cascaded SE-ResUnet for segmentation of thoracic organs at risk[J].Neurocomputing,2021,453:357-368.
[9]ZHONG T,HUANG X,TANG F,et al.Boosting-based cascaded convolutional neural networks for the segmentation of CT organs-at-risk in nasopharyngeal carcinoma[J].Medical Physics,2019,46(12):5602-5611.
[10]MEKKI L,ACHARYA S,LADRA M,et al.Deep learning segmentation of organs-at-risk with integration into clinical workflow for pediatric brain radiotherapy[J].Journal of Applied Clinical Medical Physics,2024,25(3):e14310.
[11]SAMINATHAN K,BANERJEE T,RANGASAMY DP,et al.Segmentation of thoracic organs through distributed extraction of visual feature patterns utilizing resio-inception U-Net and deep cluster recognition techniques[J].Current Gene Therapy,2024,24(3):217-238.
[12]YAN X,SUN S,HAN K,et al.AFTer-SAM:Adapting SAM with axial fusion transformer for medical imaging segmentation[C].2024 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV).Waikoloa,HI,USA:IEEE,2024:7960-7969.
[13]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional networks for biomedical image segmentation[C].Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part Ⅲ 18.Germany:Springer International Publishing,2015:234-241.
[14]ZHANG D,YANG Z,JIANG S,et al.Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks[J].Journal of Applied Clinical Medical Physics,2020,21(10):158-169.
[15]YANG J,WU B,LI L,et al.MSDS-UNet:A multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT[J].Computerized Medical Imaging and Graphics,2021,92:101957.
[16]JIN T,WANG Z.Multi-scale-ResUNet:An improve U-net with multi-scale attention and hybrid dilation for medical image segmentation[J].Multimedia Tools and Applications,2023,82(18):28473-28492.
[17]WANG H,QIU S,ZHANG B,et al.Multilevel attention Unet segmentation algorithm for lung cancer based on CT images[J].Computers,Materials & Continua,2024,78(2):1569-1589.
[18]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C].Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE,2016:770-778.
[19]SCHLEMPER J,OKTAY O,SCHAAP M,et al.Attention gated networks:Learning to leverage salient regions in medical images[J].Medical Image Analysis,2019,53:197-207.
[20]CHEN LC,PAPANDREOU G,KOKKINOS I,et al.DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848.
[21]ABADI M,AGARWAL A,BARHAM P,et al.Tensor flow:Large-scale machine learning on heterogeneous distributed systems[J].arXiv Preprint arXiv,2016,2016:265-283.
[22]KINGMA DP,BA J.Adam:A method for stochastic optimization[J].Computer Sience,2014,2014:1412.
[23]戴薇,李华玲,王沛沛,等.基于U-Net的直肠癌肿瘤靶区和危及器官的自动分割模型[J].医疗装备,2021,34(19):34-36.
DAI W,LI HL,WANG PP,et al.Automatic segmentation model of rectal cancer gross target volume and organsat risk based on U-Net[J].Medical Equipment,2021,34(19):34-36.
[24]MEN K,DAI J,LI Y.Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks[J].Medical Physics,2017,44(12):6377-6389.
[25]SONG Y,HU J,WU Q,et al.Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy[J].Radiotherapy and Oncology,2020,145:186-192.
[26]GUO HB,WANG JZ,YANG C,et al.Geometric and dosimetric evaluation of deep learning-based organs atrisk auto-segmentation for rectal cancer[J].Journal of Radiation Research and Radiation Processing,2022,40(2):62-70.