[1] BRAY F,FERLAY J,SOERJOMATARAM I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2018,68(6):394-424.
[2] SMYTH EC,LAGERGREN J,FITZGERALD RC,et al.Oesophageal cancer[J].Nat Rev Dis Primers,2017,3:17048.
[3] XIE CY,HU YH,HO JW,et al.Using genomics feature selection method in radiomics pipeline improves prognostication performance in locally advanced esophageal squamous cell carcinoma-a pilot study[J].Cancers(Basel),2021,13(9):2145-2160.
[4] LAGARDE SM,TEN KATE FJ,REITSMA JB,et al.Prognostic factors in adenocarcinoma of the esophagus or gastroesophageal junction[J].J Clin Oncol,2006,24(26):4347-4355.
[5] FRANZESE C,COZZI L,BADALAMENTI M,et al.Radiomics-based prognosis classification for high-risk prostate cancer treated with radiotherapy[J].Strahlenther Onkol,2022,198(8):710-718.
[6] KADOYA N,TANAKA S,KAJIKAWA T,et al.Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics[J].Med Phys,2020,47(5):2197-2205.
[7] TAGLIAFICO AS,PIANA M,SCHENONE D,et al.Overview of radiomics in breast cancer diagnosis and prognostication[J].Breast,2020,49:74-80.
[8] FAN J,LIU Z,MAO X,et al.Global trends in the incidence and mortality of esophageal cancer from 1990 to 2017[J].Cancer Med,2020,9(18):6875-6887.
[9] 孙骏,沈力,傅剑雄,等.基于增强CT灰度共生矩阵的纹理分析鉴别胃间质瘤和胃神经鞘瘤[J].实用放射学杂志,2021,37(3):416-419.
SUN J,SHEN L,FU JX,et al.Differential diagnosis between the gastric stromal tumor and gastric schwannoma by using texture analysis based on enhanced CT gray-level co-occurrence matrix [J].J Pract Radiol,2021,37(3):416-419.
[10] 陈旭婷,麦慧,郭美芬,等.基于灰度共生矩阵的MRI纹理分析预测乳腺癌腋窝淋巴结转移[J].实用放射学杂志,2021,37(9):1459-1463.
CHEN XT,MAI H,GUO MF,et al.The value of MRI texture analysis based on gray level co-occurrence matrix to predict axillary lymph node metastasis of breast carcinoma [J].J Pract Radiol,2021,37(9):1459-1463.
[11] 姚易明,叶靖,高慧,等.基于矢状位T2WI灰度共生矩阵对I期子宫内膜癌肌层浸润深度的评估价值[J].现代肿瘤医学,2021,29(08):1404-1409.
YAO YM,YE J,GAO H,et al.Evaluation of the depth of myometrial invasion in stage I endometrial cancer based on gray level co-occurrence matrix of sagittal T2-weighted MRI[J].Modern Oncology,2021,29(08):1404-1409.
[12] SAIHOOD A,KARSHENAS H,NILCHI A.Deep fusion of gray level co-occurrence matrices for lung nodule classification[J].PLoS One,2022,17(9):e0274516.
[13] 孔洁,祝淑钗,刘志坤,等.基于影像组学的食管鳞状细胞癌放疗后生存预测模型的建立与验证[J].中国肿瘤临床,2022,49(19):973-981.
KONG J,ZHU SC,LIU ZK,et al.Construction and validation of a radiomic-based survival prediction model for patients with esophageal squamous cell carcinoma after radiotherapy[J].Chin J Clin Oncol,2022,49(19):973-981.
[14] LUO HS,HUANG SF,XU HY,et al.A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer[J].Radiat Oncol,2020,15(1):249-260.
[15] VICKERS AJ,WOO S.Decision curve analysis in the evaluation of radiology research[J].Eur Radiol,2022,32(9):5787-5789.
[16] LAI L.A Nomogram to predict patients with obstructive coronary artery disease:Development and validation[J].Cardiovascular Innovations and Applications,2021,4(2):245-255.