[1] MARIANA-M,DONATO H,CAMPOS N,et al.Interobserver variability in MRI measurements of mesorectal invasion depth in rectal cancer[J].Abdominal Radiology,2022,47(3):907-914.
[2] 胡飞翔,岳亚丽,彭卫军,等.DWI联合T2WI在鉴别T2和T3期直肠癌术前分期中的应用价值[J].放射学实践,2021,36(4):507-513.
HU FX,YUE YL PENG WJ,et al. The application value of DWI combined with T2WI in distinguishing preoperative staging of T2 and T3 stage rectal cancer [J] Practice in Radiology,2021,36 (4):507-513.
[3] QIAN P,YI X,CHEN C,et al.Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer[J].European Radiology,2022,32(1):714-724.
[4] LIU Z,ZHANG XY,SHI YJ,et al.Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J].Clin Cancer Res,2017,23(23):7253-7262.
[5] YANG S,ZHANG J,ZHANG YD,et al.FeAture Explorer (FAE):A tool for developing and comparing radiomics models[J].PLOS ONE,2020,15(8):e237587.
[6] LANQING Y,LIU D,FANG X,et al.Rectal cancer:can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis[J].European Radiology,2019,29(12):6469-6476.
[7] 李梦蕾,张敬,淡一波,等.术前预测结直肠癌淋巴结转移的临床-影像组学列线图的建立和验证[J].中国癌症杂志,2020,30(01):49-56.
LI ML,ZHANG J,DAN YB,et al.Establishment and validation of a clinical imaging omics column chart for preoperative prediction of lymph node metastasis in colorectal cancer [J] Chinese Journal of Cancer,2020,30(01):49-56.
[8] 周振,沈浮,陆海迪,等.基于高分辨T2WI的影像组学中不同分割方法对直肠癌术前T分期的影响[J].中国医学计算机成像杂志,2021,27(03):225-230.
ZHOU Z,SHEN F,LU HD,et al.The impact of different segmentation methods on preoperative T-staging of rectal cancer in imaging omics based on high-resolution T2WI [J] .Chinese Journal of Medical Computer Imaging,2021,27(03):225-230.
[9] HAIDI L,YUAN Y,ZHOU Z,et al.Assessment of MRI-based radiomics in preoperative T staging of rectal cancer:Comparison between minimum and maximum delineation methods[J].BioMed Research International,2021,2021:1-9.
[10] ZHAO B,GABRIEL RA,VAIDA F,et al.Using machine learning to construct nomograms for patients with metastatic colon cancer[J].Colorectal Disease,2020,22(8):914-922.
[11] TIBERMACINE H,ROUANET P,SBARRA M,et al.Radiomics modelling in rectal cancer to predict disease-free survival:evaluation of different approaches[J].British Journal of Surgery,2021,108(10):1243-1250.
[12] MOU L,JIN YM,ZHANG YC,et al.Radiomics for predicting perineural invasion status in rectal cancer[J].World Journal of Gastroenterology,2021,27(33):5610-5621.
[13] ALFONSO R,NARDONE V,GIACOBBE G,et al.Radiomics as a new frontier of imaging for cancer prognosis:A narrative review[J].Diagnostics,2021,11(10):1796-1809.
[14] FRANCESCA C,GIANNINI V,GABELLONI M,et al.Radiomics and magnetic resonance imaging of rectal cancer:From engineering to clinical practice[J].Diagnostics,2021,11(5):756-767.
[15]VETRI-SUDAR J,PARODER V,GIBBS P,et al.MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer[J].European Radiology,2022,32(2):971-980.
[16]HIRAM SH,ANDREW A,RAMI V,et al.Radiomics of MRI for pretreatment prediction of pathologic complete response,tumor regression grade,and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation:an international multicenter study.[J].European Radiology,2020,11:6263-6273.
[17] LIU L,LIU Y,XU L,et al.Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer[J].J Magn Reson Imaging,2017,45(6):1798-1808.
[18]ARNALDO S,VERDE F,ROMEO V,et al.Radiomics and machine learning applications in rectal cancer:Current update and future perspectives[J].World Journal of Gastroenterology,2021,27(32):5306-5321.