[1] TALEBIAN S,FOROUGHI J,WADE SJ,et al.Biopolymers for antitumor implantable drug delivery systems:recent advances and future outlook[J].Advanced Materials,2018,2018,30(31):1-31.
[2] KHOT VM,SALUNKHE AB,PRICL S,et al.Nanomedicine-driven molecular targeting,drug delivery,and therapeutic approaches to cancer chemoresistance[J].Drug Discovery Today,2021,26(3):724-39.
[3] XU C,QU X.Cerium oxide nanoparticle:a remarkably versatile rare earth nanomaterial for biological applications[J].NPG Asia Materials,2014,6(3):1-15.
[4] DAHLE JT,ARAI Y.Environmental geochemistry of cerium:applications and toxicology of cerium oxide nanoparticles[J].Int J Environ Res Public Health,2015,12(2):1253-1278.
[5] SINGH S.Cerium oxide based nanozymes:Redox phenomenon at biointerfaces[J].Biointerphases,2016,2016,11(4):1-12.
[6] ESCH F,FABRIS S,LING Z,et al.Electron localizationd determines defect formation on ceria substrates[J].Science,2005,309(5735):752-755.
[7] WEI H,WANG E.Nanomaterials with enzyme-like characteristics (nanozymes):next-generation artificial enzymes[J].Chemical Society Reviews,2013,42(14):6060-6093.
[8] ALILI L,SACK M,KARAKOTI AS,et al.Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions[J].Biomaterials,2011,32(11):2918-2929.
[9] SINGH S,DOSANI T,KARAKOTI AS,et al.A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties[J].Biomaterials,2011,32(28):6745-6753.
[10] KIM HY,AHN JK,KIM MI,et al.Rapid and label-free,electrochemical DNA detection utilizing the oxidase-mimicking activity of cerium oxide nanoparticles[J].Electrochemistry Communications,2019,99:5-10.
[11] NOURMOHAMMADI E,KHOSHDEL-SARKARIZI H,NEDAEINIA R,et al.Cerium oxide nanoparticles:a promising tool for the treatment of fibrosarcoma in-vivo[J].Mater Sci Eng C Mater Biol Appl,2020,109:110533.
[12] EGUCHI K,SETOGUCHI T,INOUE T,et al.Electrical properties of ceria-based oxides and their application to solid oxide fuel cells[J].Solid State Ionics,1992,52(30):162-172.
[13] TARNUZZER RW,COLON J,PATIL S,et al.Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage[J].Nano Letters,2005,5(12):2573-2577.
[14] COLON J,HERRERA L,SMITH J,et al.Protection from radiation-induced pneumonitis using cerium oxide nanoparticles[J].Nanomedicine:Nanotechnology,Biology,and Medicine,2009,5(2):225-231.
[15] ZHOU X,YOU M,WANG F,et al.Multifunctional graphdiyne-cerium oxide nanozymes facilitate microRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer[J].Advanced Materials (Deerfield Beach,Fla),2021,33(24):1-10.
[16] JIANG W,HAN X,ZHANG T,et al.An oxygen self-evolving,multistage delivery system for deeply located hypoxic tumor treatment[J].Advanced Healthcare Materials,2020,9(2):1-12.
[17] ANSELL SM,LESOKHIN AM,BORRELLO I,et al.PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J].The New England Journal of Medicine,2015,372(4):311-319.
[18] SRIVASTAVA MK,PRATIMA S,CLEMENTS VK,et al.Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine[J].Cancer Research,2010,70(1):68-77.
[19] BETSCH A,RUTGEERTS O,FEVERY S,et al.Myeloid-derived suppressor cells in lymphoma:The good,the bad and the ugly[J].Blood Reviews,2018,32(6):490-498.
[20] WEBER J,GIBNEY G,KUDCHADKAR RR,et al.Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab[J].Cancer Immunology Research,2016,4(4):345-353.
[21] ZHEN X,JI J,XU J,et al.MiR-30a increases MDSC differentiation and immunosuppressive function by targeting SOCS3 in mice with B-cell lymphoma[J].FEBS Journal,2017,284(15):2410-2424.
[22] SEMENZA G.Hypoxia-inducible factors in physiology and medicine[J].Cell,2012,148(3):399-408.
[23] ZUO H,HOU Y,YU Y,et al.Circumventing myeloid-derived suppressor cell-mediated immunosuppression using an oxygen-generated and -economized nanoplatform[J].ACS Applied Materials & Interfaces,2020,12(50):55723-55736.
[24] DAS J,CHOI YJ,HAN JW,et al.Nanoceria-mediated delivery of doxorubicin enhances the anti-tumour efficiency in ovarian cancer cells via apoptosis[J].Scientific Reports,2017,7(1):2045-2322.
[25] SACK M,ALILI L,KARAMAN E,et al.Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles-a novel aspect in cancer therapy[J].Mol Cancer Ther,2014,13(7):1740-1749.
[26] YU S,CHEN Z,ZENG X,et al.Advances in nanomedicine for cancer starvation therapy[J].Theranostics,2019:8026-8047.
[27] ZHANG C,NI D,LIU Y,et al.Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy[J].Nature Nanotechnology,2017,12(4):378-386.
[28] FU LH,QI C,HU YR,et al.Glucose oxidase-instructed multimodal synergistic cancer therapy[J].Advanced Materials (Deerfield Beach,Fla),2020,32(28):1-12.
[29] LIU Z,WAN P,YANG M,et al.Cell membrane camouflaged cerium oxide nanocubes for targeting enhanced tumor-selective therapy[J].Journal of Materials Chemistry B,2021,9(46):9524-9532.
[30] SONG X,FENG L,LIANG C,et al.Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies[J]. Nano Lett,2016,16(10):6145-6153.
[31] SASIDHARAN SWARNALATHA LUCKY,KHEE CHEE SOO,ZHANG Y.Nanoparticles in photodynamic therapy[J].Chem Rev,2015,115(4):1990-2042.
[32] ZHANG LX,ZHONG H,ZHANG H,et al.A multifunctional nano system based on DNA and CeO2 for intracellular imaging of miRNA and enhancing photodynamic therapy[J].Talanta,2020,221(12):1-10.
[33] BAI S,LAN Y,FU S,et al.Connecting calcium-based nanomaterials and cancer:from diagnosis to therapy[J].Nanomicro Lett,2022,14(1):145.
[34] ZHOU S,XU J,DAI Y,et al.Engineering tumor-specific catalytic nanosystem for NIR-II photothermal-augmented and synergistic starvation/chemodynamic nanotherapy[J].Biomater Res,2022,26(1):66.
[35] ZHANG M,YANG D,DONG C,et al.Two-dimensional mxene-originated in situ nanosonosensitizer generation for augmented and synergistic sonodynamic tumor nanotherapy[J].ACS Nano,2022,16(6):9938-9952.
[36] DONG J,MA K,PEI Y,et al.Core-shell metal-organic frameworks with pH/GSH dual-responsiveness for combined chemo-chemodynamic therapy[J].Chemical communications (Cambridge,England),2022,58(88):12341-12354.
[37] YANG G,JI J,LIU Z,et al.Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2021,13(6):e1720.
[38] LIU B,BIAN Y,LIANG S,et al.One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy[J].ACS Nano,2022,16(1):617-630.
[39] ZHU X,GONG Y,LIU Y,et al.Ru@CeO yolk shell nanozymes:Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer[J].Biomaterials,2020,242:119923.
[40] CHENG F,WANG S,ZHENG H,et al.Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects[J].Colloids Surf B Biointerfaces,2021,205:111878.
[41] DAS D,PRAKASH J,GOUTAM UK,et al.Oxygen vacancy and valence engineering in CeO through distinct sized ion doping and their impact on oxygen reduction reaction catalysis[J].Dalton Trans,2022,51(48):18572-18582.