[1]SUNG H,FERLAY J,SIEGEL RL,et al.Global cancer statistics 2020:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
[2]CROSBIE EJ,KITSON SJ,MCALPINE JN,et al.Endometrial cancer[J].Lancet,2022,399(10333):1412-1428.
[3]BEDDY P,O' NEILL AC,YAMAMOTO AK,et al.FIGO staging system for endometrial cancer:added benefits of MR imaging[J].Radiographics,2012,32(1):241-254.
[4]WOO S,CHO JY,KIM SY,et al.Histogram analysis of apparent diffusion coefficient map of diffusion-weighted MRI in endometrial cancer:a preliminary correlation study with histological grade[J].Acta Radiol,2014,55(10):1270-1277.
[5]KAKKAR C,GUPTA K,JAIN K,et al.Diagnostic accuracy of calculated tumor volumes and apparent diffusion coefficient values in predicting endometrial cancer grade[J].Int J Appl Basic Med Res,2022,12(1):37-42.
[6]BEN-SHACHAR I,PAVELKA J,COHN DE,et al.Surgical staging for patients presenting with grade 1 endometrial carcinoma[J].Obstet Gynecol,2005,105(3):487-493.
[7]ZHANG J,YU X,ZHANG X,et al.Whole-lesion apparent diffusion coefficient (ADC) histogram as a quantitative biomarker to preoperatively differentiate stage Ia endometrial carcinoma from benign endometrial lesions[J].BMC Med Imaging,2022,22(1):139-153.
[8]TAKAHASHI M,KOZAWA E,TANISAKA M,et al.Utility of histogram analysis of apparent diffusion coefficient maps obtained using 3.0T MRI for distinguishing uterine carcinosarcoma from endometrial carcinoma[J].J Magn Reson Imaging,2016,43(6):1301-1307.
[9]MA X,SHEN M,HE Y,et al.The role of volumetric ADC histogram analysis in preoperatively evaluating the tumour subtype and grade of endometrial cancer[J].Eur J Radiol,2021,7(140):109745-109751.
[10]BONTTI M,PEDRINOLLA B,CYBULSKI AJ,et al.Prediction of histological grade of endometrial cancer by means of MRI[J].Eur J Radiol,2018,6(103):44-50.
[11]NOUGARET S,REINHOLD C,ALSHARIF SS,et al.Endometrial cancer:combined MR volumetry and diffusion-weighted imaging for assessment of myometrial and lymphovascular invasion and tumor grade[J].Radiology,2015,276(3):797-808.
[12]张云,马聪敏,任金武,等.Logistic回归联合ROC曲线评价MRI定量参数在预测子宫内膜癌术前分级中的诊断价值[J].临床放射学杂志,2021,40(03):551-555.
ZHANG Y,MA CM,REN JW,et al.Logistic regression combined with ROC curve to evaluate the diagnostic value of MRI quantitative parameters in predicting the preoperative grading of endometrial cancer[J].Journal of Clinical Radiology,2021,40(03):551-555.
[13]YAN BC,LI Y,MA FH,et al.Preoperative assessment for high-risk endometrial cancer by developing an MRI-and clinical-based radiomics nomogram:a multicenter study[J].J Magn Reson Imaging,2020,52(6):1872-1882.
[14]QUAN Q,PENG H,GONG S,et al.The preeminent value of the apparent diffusion coefficient in assessing high-risk factors and prognosis for stage I endometrial carcinoma patients[J].Front Oncol,2022,2(12):820904-82913.
[15]ZHANG K,ZHANG Y,FANG X,et al.MRI-based radiomics and ADC values are related to recurrence of endometrial carcinoma:a preliminary analysis[J].BMC Cancer,2021,21(1):1471-2407.
[16]闫斌,赵婷婷,梁秀芬.多模态MRI在子宫内膜癌术前风险分层中的应用进展[J].现代肿瘤医学,2020,28(09):1583-1586.
YAN B,ZHAO TT,LIANG XF.Application of multimodal MRI in preoperative risk stratification of endometrial cancer[J].Modern Oncology,2020,28(09):1583-1586.
[17]CHEN HZ,WANG XR,ZHAO FM,et al.The development and validation of a CT-based radiomics nomogram to preoperatively predict lymph node metastasis in high-grade serous ovarian cancer[J].Front Oncol,2021,31(11):711648-711659.
[18]何月明,陈思琳,马跃昆,等.基于MR组学特征的诺模图(Nomogram)在术前预测宫颈癌淋巴血管间隙侵犯中应用的初步研究[J].临床放射学杂志,2022,41(08):1565-1574.
HE YM,CHEN SL,MA YK,et al.Application of Nomogram in preoperative prediction of lymphatic vascular space invasion in cervical cancer[J].Journal of Clinical Radiology,2022,41(08):1565-1574.
[19]LUO Y,MEI D,GONG J,et al.Multiparametric MRI-based radiomics nomogram for predicting lymphovascular space invasion in endometrial carcinoma[J].J Magn Reson Imaging,2020,52(4):1257-1262.
[20]吴树剑,俞咏梅,范莉芳,等.MSCT影像组学结合机器学习预测直径2~5 cm胃胃肠间质瘤危险度分级研究[J].中国实用外科杂志,2022,42(12):1401-1407.
WU SJ,YU YM,FAN LF,et al.Prediction of risk grade of gastroenteric stromal tumor with diameter of 2~5 cm by MSCT imaging combined with machine learning[J].Chinese Journal of Practical Surgery,2022,42(12):1401-1407.
[21]ZHENG T,YANG L,DU J,et al.Combination analysis of a radiomics-based predictive model with clinical indicators for the preoperative assessment of histological grade in endometrial carcinoma[J].Front Oncol,2021,21(11):582495-582506.
[22]YUE X,HE X,HE S,et al.Multiparametric magnetic resonance imaging-based radiomics nomogram for predicting tumor grade in endometrial cancer[J].Front Oncol,2023,13(2):1081134-1081145.
[23]NAKAMURA K,IMAFUKU N,NISHIDA T,et al.Measurement of the minimum apparent diffusion coefficient (ADCmin) of the primary tumor and CA125 are predictive of disease recurrence for patients with endometrial cancer[J].Gynecol Oncol,2012,124(2):335-339.
[24]SEO JM,KIM CK,CHOI D,et al.Endometrial cancer:utility of diffusion-weighted magnetic resonance imaging with background body signal suppression at 3T[J].J Magn Reson Imaging,2013,37(5):1151-1159.
[25]PAYABVASH S,TIHAN T,CHA S.Differentiation of cerebellar hemisphere tumors:combining apparent diffusion coefficient histogram analysis and structural MRI features[J].J Neuroimaging,2018,28(6):656-665.
[26]VIDIC I,EGNELL L,JEROME NP,et al.Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features:preliminary study[J].J Magn Reson Imaging,2018,47(5):1205-1216.
[27]MEYER HJ,LEIFELS L,HAMARLA G,et al.Associations between histogram analysis parameters derived from DCE-MRI and histopathological features including expression of EGFR,p16,VEGF,Hif1-alpha,and p53 in HNSCC[J].Contrast Media Mol Imaging,2019,11(1):81909-81912.
[28]TIAN Q,YAN LF,ZHANG X,et al.Radiomics strategy for glioma grading using texture features from multiparametric MRI[J].J Magn Reson Imaging,2018,48(6):1518-1528.
[29]LI Q,XIAO Q,YANG M,et al.Histogram analysis of quantitative parameters from synthetic MRI:correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J].Eur J Radiol,2021,13(9):109697-109706.
[30]YAN B,LIANG X,ZHAO T,et al.Preoperative prediction of deep myometrial invasion and tumor grade for stage I endometrioid adenocarcinoma:a simple method of measurement on DWI[J].Eur Radiol,2019,29(2):838-848.
[31]TODO Y,WATARI H,OKAMOTO K,et al.Tumor volume successively reflects the state of disease progression in endometrial cancer[J].Gynecol Oncol,2013,129(3):472-477.
[32]LAVAUD P,FEDIDA B,CANLORBE G,et al.Preoperative MR imaging for ESMO-ESGO-ESTRO classification of endometrial cancer[J].Diagn Interv Imaging,2018,99(6):387-396.
[33]BEREBY-KAHANE M,DAUTRY R,MATZNER-LOBER E,et al.Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis[J].Diagn Interv Imaging,2020,101(6):401-411.
[34]CAI S,ZHANG H,CHEN X,et al.MR volumetry in predicting the aggressiveness of endometrioid adenocarcinoma:correlation with final pathological results[J].Acta Radiol,2020,61(5):705-713.
[35]TAO J,WANG Y,LIANG Y,et al.Evaluation and monitoring of endometrial cancer based on magnetic resonance imaging features of deep learning[J].Contrast Media Mol Imaging,2022,18(3):5198592-5198601.