[1]BRAY F,FERLAY J,SOERJOMATARAM I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:A Cancer Journal for Clinicians,2018,68(6):394-424.
[2]LIU X,YU C,BI Y,et al.Trends and age-period-cohort effect on incidence and mortality of prostate cancer from 1990 to 2017 in China[J].Public Health,2019,172:70-80.
[3]LOUIE KS,SEIGNEURIN A,CATHCART P,et al.Do prostate cancer risk models improve the predictive accuracy of PSA screening?A meta-analysis[J].Ann Oncol,2015,26(5):1031-1032.
[4]曹文哲,应俊,张亚慧,等.基于机器学习算法的前列腺癌诊断模型研究[J].中国医疗设备,2016,31(4):30-35.
CAO WZ,YING J,ZHANG YH,et al.Research on prostate cancer diagnosis model based on machine learning algorithm [J].China Medical Equipment,2016,31(4):30-35.
[5]FAN X,XIE N,CHEN J,et al.Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer[J].Frontiers in Oncology,2022,2:12-24.
[6]柏冬,李璐,王宏林.机器学习方法对前列腺癌的诊断价值[J].分子影像学杂志,2020,43(2):5-11.
BAI D,LI L,WANG HL.Diagnostic value of machine learning methods for prostate cancer[J].Chinese Journal of Molecular Imaging,2020,43(2):5-11.
[7]MALIK SS,BATOOL R,MASOOD N,et al.Risk factors for prostate cancer:A multifactorial case-control study[J].Curr Probl Cancer,2018,32(5):10-13.
[8]葛平.基于数据挖掘的前列腺癌相关数据的研究[D].北京:北京理工大学,2016.
GE P.Research on prostate cancer related data based on data mining[D].Beijing:Beijing Institute of Technology,2016.
[9]王道虎,郭悦江,陈炜,等.前列腺体积和前列腺特异性抗原密度与前列腺癌检出率的关系[J].中山大学学报(医学科学版),2013,34(5):768-771.
WANG DH,GUO YJ,CHEN W,et al.Relationship between prostate volume and prostate-specific antigen density and prostate cancer detection rate[J].Journal of Sun Yat-sen University (Medical Science Edition),2013,34(5):768-771.
[10]孙林,张起峰,徐久成.基于互信息的Fisher Score多标记特征选择[J].南京大学学报(自然科学),2023,59(01):55-66.
SUN L,ZHANG QF,XU JC.Multi-marker feature selection by Fisher Score based on mutual information[J].Journal of Nanjing University (Natural Sciences),2023,59(01):55-66.
[11]SONG LL,XU YK,WANG MH,et al.PreCar_Deep:A deep learning framework for prediction of protein carbonylation sites based on Borderline-SMOTE strategy[J].Chemometrics and Intelligent Laboratory Systems,2021,218:28-36.
[12]徐慧丽.Stacking算法的研究及改进[D].广州:华南理工大学,2018.
XU HL.Research and improvement of stacking algorithm[D].Guangzhou:South China University of Technology,2018.
[13]车宏鑫,王桐,王伟.前列腺癌预测模型对比研究[J].数据分析与知识发现,2021,5(9):107-114.
CHE HX,WANG T,WANG W.Comparative study of prostate cancer prediction models[J].Data Analysis and Knowledge Discovery,2021,5(9):107-114.
[14]路帅,李文杰,徐紫薇,等.前列腺癌风险预测模型的构建与验证[J].重庆医科大学学报,2023,48(3):328-334.
LU S,LI WJ,XU ZW,et al.Construction and verification of prostate cancer risk prediction model[J].Journal of Chongqing Medical University,2023,48(3):328-334.
[15]KSIEK W,GANDOR M,PAWIAK P.Comparison of various approaches to combine logistic regression with genetic algorithms in survival prediction of hepatocellular carcinoma[J].Computers in Biology and Medicine,2021,134:31-43.
[16]LIAO XY,HAMEED N,CLOS J.An investigation of XGBoost-based algorithm for breast cancer classification[J].Machine Learning with Applications,2021,6:12-26.
[17]DOU L,LI X,ZHANG L,et al.iGlu_AdaBoost:Identification of lysine glutarylation using the AdaBoost classifier[J].Journal of Proteome Research,2020,20(1):6-9.
[18]YANG L,WU H,JIN X,et al.Study of cardiovascular disease prediction model based on random forest in eastern China[J].Scientific Reports,2020,10(1):7-11.
[19]EHSANI R,DRABLS F.Robust distance measures for KNN classification of cancer data[J].Cancer Informatics,2020,19:28-32.
[20]MOMENZADEH N,HAFEZALSEHEH H,NAYEBPOUR MR,et al.A hybrid machine learning approach for predicting survival of patients with prostate cancer:A SEER-based population study[J].Indormatics in Medicine Unlocked,2021,27:23-34.
[21]BOLUWAJI A,AKINNUWESI KA,OLAYANJU BS,et al.Application of support vector machine algorithm for early differential diagnosis of prostate cancer[J].Data Science and Management,2023,6:1-12.