[1]SUNG H,FERLAY J,SIEGEL RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA Cancer J Clin,2021,71(3):209-249.
[2]TOKUNAGA M,SATO Y,NAKAGAWA M,et al.Perioperative chemotherapy for locally advanced gastric cancer in Japan:current and future perspectives [J].Surg Today,2020,50(1):30-37.
[3]BONNAY F,VELOSO A,STEINMANN V,et al.Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis [J].Cell,2020,182(6):1490-1507 e1419.
[4]GAUDE E,FREZZA C.Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival [J].Nat Commun,2016:7:13041.
[5]WALSH HR,CRUICKSHANK BM,BROWN JM,et al.The flick of a switch:conferring survival advantage to breast cancer stem cells through metabolic plasticity [J].Front Oncol,2019,9:753.
[6]LUNT SY,VANDER HEIDEN MG.Aerobic glycolysis:meeting the metabolic requirements of cell proliferation [J].Annu Rev Cell Dev Biol,2011,27:441-464.
[7]WARBURG O,WIND F,NEGELEIN E.The metabolism of tumors in the body [J].J Gen Physiol,1927,8(6):519-530.
[8]HANAHAN D,WEINBERG RA.Hallmarks of cancer:the next generation [J].Cell,2011,144(5):646-674.
[9]VAUPEL P,SCHMIDBERGER H,MAYER A.The Warburg effect:essential part of metabolic reprogramming and central contributor to cancer progression [J].Int J Radiat Biol,2019,95(7):912-919.
[10]LIN DC,HAO JJ,NAGATA Y,et al.Genomic and molecular characterization of esophageal squamous cell carcinoma [J].Nat Genet,2014,46(5):467-473.
[11]LAMBERT AW,PATTABIRAMAN DR,WEINBERG RA.Emerging biological principles of metastasis [J].Cell,2017,168(4):670-691.
[12]CLEVERS H.The intestinal crypt,a prototype stem cell compartment [J].Cell,2013,154(2):274-284.
[13]MACCALLI C,RASUL KI,ELAWAD M,et al.The role of cancer stem cells in the modulation of anti-tumor immune responses [J].Semin Cancer Biol,2018,53:189-200.
[14]YANG J,REN B,YANG G,et al.The enhancement of glycolysis regulates pancreatic cancer metastasis [J].Cell Mol Life Sci,2020,77(2):305-321.
[15]FU QF,LIU Y,FAN Y,et al.Alpha-enolase promotes cell glycolysis,growth,migration,and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway [J].J Hematol Oncol,2015,8:22.
[16]SUN L,LU T,TIAN K,et al.Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway [J].Eur J Pharmacol,2019,845:8-15.
[17]GATENBY RA,GILLIES RJ.Why do cancers have high aerobic glycolysis[J].Nat Rev Cancer,2004,4(11):891-899.
[18]BHATIA S,P WANG,A TOH,et al.New insights into the role of phenotypic plasticity and EMT in driving cancer progression [J].Front Mol Biosci,2020,7:71.
[19]FENDT SM,FREZZA C,EREZ A.Targeting metabolic plasticity and flexibility dynamics for cancer therapy [J].Cancer Discov,2020,10(12):1797-1807.
[20]MCDONALD OG,LI X,SAUNDERS T,et al.Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis [J].Nat Genet,2017,49(3):367-376.
[21]CHANO T,AVNET S,KUSUZAKI K,et al.Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells [J].Am J Cancer Res,2016,6(4):859-875.
[22]FLAVAHAN WA,DRIER Y,LIAU BB,et al.Insulator dysfunction and oncogene activation in IDH mutant gliomas [J].Nature,2016,529(7584):110-114.
[23]SCIACOVELLI M,GONCALVES E,JOHNSON TI,et al.Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition [J].Nature,2016,537(7621):544-547.
[24]WU D,HU D,CHEN H,et al.Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer [J].Nature,2018,559(7715):637-641.
[25]RAFFEL S,FALCONE M,KNEISEL N,et al.BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation [J].Nature,2017,551(7680):384-388.
[26]STEMMLER MP,ECCLES RL,BRABLETZ S,et al.Non-redundant functions of EMT transcription factors [J].Nat Cell Biol,2019,21(1):102-112.
[27]PRASAD CP,GOGIA A,BATRA A.Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis [J].Clin Transl Oncol,2022,24(10):1844-1855.
[28]YANG L,YAN X,CHEN J,et al.Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients [J].Proc Natl Acad Sci USA,2021,118(11):1-11.
[29]LI HJ,KE FY,LIN CC,et al.ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition [J].Cancer Res,2021,81(15):4094-4109.
[30]XIAO H,ZHANG L,CHEN Y,et al.PKM2 promotes breast cancer progression by regulating epithelial mesenchymal transition [J].Anal Cell Pathol (Amst),2020,2020:8396023.
[31]ZHANG Y,LIN S,CHEN Y,et al.LDH-A promotes epithelial-mesenchymal transition by upregulating ZEB2 in intestinal-type gastric cancer [J].Onco Targets Ther,2018,11:2363-2373.
[32]HOU X,SHI X,ZHANG W,et al.LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma [J].Cell Death Dis,2021,12(4):347.
[33]DAS CK,PAREKH A,PARIDA PK,et al.Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer [J].Biochim Biophys Acta Mol Cell Res,2019,1866(6):1004-1018.
[34]ZHAO H,DUAN Q,ZHANG Z,et al.Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells [J].J Cell Mol Med,2017,21(9):2055-2067.
[35]AZOITEI N,BECHER A,STEINESTEL K,et al.PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation [J].Mol Cancer,2016,15:3.
[36]ZHANG W,ZHANG X,HUANG S,et al.FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis [J].Mol Oncol,2021,15(5):1466-1485.
[37]YANG W,XIA Y,JI H,et al.Corrigendum:Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation [J].Nature,2017,550(7674):142.
[38]LI L,ZHANG Y,QIAO J,et al.Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting angiogenesis [J].J Biol Chem,2014,289(37):25812-25821.
[39]LI Z,YANG P,LI Z.The multifaceted regulation and functions of PKM2 in tumor progression [J].Biochim Biophys Acta,2014,1846(2):285-296.
[40]DE BOCK K,GEORGIADOU M,SCHOORS S,et al.Role of PFKFB3-driven glycolysis in vessel sprouting [J].Cell,2013,154(3):651-663.
[41]HUINEN ZR,HUIJBERS EJM,VAN BEIJNUM JR,et al.Anti-angiogenic agents-overcoming tumour endothelial cell anergy and improving immunotherapy outcomes [J].Nat Rev Clin Oncol,2021,18(8):527-540.
[42]XU Z,GUO C,YE Q,et al.Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization [J].Nat Commun,2021,12(1):6310.
[43]PAYEN VL,MINA E,VAN HEE VF,et al.Monocarboxylate transporters in cancer [J].Mol Metab,2020,33:48-66.
[44]WANG ZH,PENG WB,ZHANG P,et al.Lactate in the tumour microenvironment:From immune modulation to therapy [J].EBioMedicine,2021,73:103627.
[45]IPPOLITO L,MORANDI A,GIANNONI E,et al.Lactate:a metabolic driver in the tumour landscape [J].Trends Biochem Sci,2019,44(2):153-166.
[46]WATSON MJ,VIGNALI PDA,MULLETT SJ,et al.Metabolic support of tumour-infiltrating regulatory T cells by lactic acid [J].Nature,2021,591(7851):645-651.
[47]XIA H,WANG W,CRESPO J,et al.Suppression of FIP200 and autophagy by tumor-derived lactate promotes naive T cell apoptosis and affects tumor immunity [J].Sci Immunol,2017,2(17):1-29.
[48]BRAND A,SINGER K,KOEHL GE,et al.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells [J].Cell Metab,2016,24(5):657-671.
[49]COLEGIO OR,CHU NQ,SZABO AL,et al.Functional polarization of tumour-associated macrophages by tumour-derived lactic acid [J].Nature,2014,513(7519):559-563.
[50]DOHERTY JR,CLEVELAND JL.Targeting lactate metabolism for cancer therapeutics [J].J Clin Invest,2013,123(9):3685-3692.
[51]HIRSCHHAEUSER F,SATTLER UG,MUELLER-KLIESER W.Lactate:a metabolic key player in cancer [J].Cancer Res,2011,71(22):6921-6925.
[52]NIU D,LUO T,WANG H,et al.Lactic acid in tumor invasion [J].Clin Chim Acta,2021,522:61-69.
[53]KUNHIRAMAN H,EDATT L,THEKKEVEEDU S,et al.2-deoxy glucose modulates expression and biological activity of VEGF in a SIRT-1 dependent mechanism [J].J Cell Biochem,2017,118(2):252-262.
[54]JANG M,KIM SS,LEE J.Cancer cell metabolism:implications for therapeutic targets [J].Exp Mol Med,2013,45:e45.
[55]MALM SW,HANKE NT,GILL A,et al.The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines [J].J Exp Clin Cancer Res,2015,34:31.
[56]RAEZ LE,PAPADOPOULOS K,RICART AD,et al.A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors [J].Cancer Chemother Pharmacol,2013,71(2):523-530.
[57]GAO S,SONG D,LIU Y,et al.Helicobacter pylori CagA protein attenuates 5-Fu sensitivity of gastric cancer cells through upregulating cellular glucose metabolism [J].Onco Targets Ther,2020,13:6339-6349.
[58]YAKISICH JS,AZAD N,KAUSHIK V,et al.The biguanides metformin and buformin in combination with 2-deoxy-glucose or WZB-117 inhibit the viability of highly resistant human lung cancer cells [J].Stem Cells Int,2019,2019:6254269.