|Table of Contents|

Recent advances in aerobic glycolysis promoting tumor metastasis and stemness

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2023 10
Page:
1944-1948
Research Field:
Publishing date:

Info

Title:
Recent advances in aerobic glycolysis promoting tumor metastasis and stemness
Author(s):
LIU ShiyaRAN Yuliang
National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100021,China.
Keywords:
cancerglycolysismetastasisstemnessepithelial-mesenchymal transition (EMT)combination targeted therapy
PACS:
R730.23
DOI:
10.3969/j.issn.1672-4992.2023.10.034
Abstract:
Cancer is the second leading cause of death worldwide and a serious global health problem.Despite the rapid development of medicine and the continuous improvement of treatment methods,the prognosis of cancer patients is still poor and the survival rate cannot be improved due to the presence of tumor recurrence and distal metastasis.Recent "metabolic reprogramming" in tumor cells provided us with new ideas.The metabolic switch from oxidative phosphorylation to glycolysis in tumor cells can affect the stemness of tumor cells and participate in the regulation of tumor invasion and distal metastasis.This article summarizes the recent research on glycolysis in tumor cells,including reprogramming of glucose metabolism,and potential mechanism of glycolysis affecting tumor cell metastasis and stemness.To explore the feasibility of targeted glycolysis combined therapy,hoping to contribute to the subsequent study of tumor cell glucose metabolism and provide a new strategy for tumor treatment.

References:

[1]SUNG H,FERLAY J,SIEGEL RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA Cancer J Clin,2021,71(3):209-249.
[2]TOKUNAGA M,SATO Y,NAKAGAWA M,et al.Perioperative chemotherapy for locally advanced gastric cancer in Japan:current and future perspectives [J].Surg Today,2020,50(1):30-37.
[3]BONNAY F,VELOSO A,STEINMANN V,et al.Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis [J].Cell,2020,182(6):1490-1507 e1419.
[4]GAUDE E,FREZZA C.Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival [J].Nat Commun,2016:7:13041.
[5]WALSH HR,CRUICKSHANK BM,BROWN JM,et al.The flick of a switch:conferring survival advantage to breast cancer stem cells through metabolic plasticity [J].Front Oncol,2019,9:753.
[6]LUNT SY,VANDER HEIDEN MG.Aerobic glycolysis:meeting the metabolic requirements of cell proliferation [J].Annu Rev Cell Dev Biol,2011,27:441-464.
[7]WARBURG O,WIND F,NEGELEIN E.The metabolism of tumors in the body [J].J Gen Physiol,1927,8(6):519-530.
[8]HANAHAN D,WEINBERG RA.Hallmarks of cancer:the next generation [J].Cell,2011,144(5):646-674.
[9]VAUPEL P,SCHMIDBERGER H,MAYER A.The Warburg effect:essential part of metabolic reprogramming and central contributor to cancer progression [J].Int J Radiat Biol,2019,95(7):912-919.
[10]LIN DC,HAO JJ,NAGATA Y,et al.Genomic and molecular characterization of esophageal squamous cell carcinoma [J].Nat Genet,2014,46(5):467-473.
[11]LAMBERT AW,PATTABIRAMAN DR,WEINBERG RA.Emerging biological principles of metastasis [J].Cell,2017,168(4):670-691.
[12]CLEVERS H.The intestinal crypt,a prototype stem cell compartment [J].Cell,2013,154(2):274-284.
[13]MACCALLI C,RASUL KI,ELAWAD M,et al.The role of cancer stem cells in the modulation of anti-tumor immune responses [J].Semin Cancer Biol,2018,53:189-200.
[14]YANG J,REN B,YANG G,et al.The enhancement of glycolysis regulates pancreatic cancer metastasis [J].Cell Mol Life Sci,2020,77(2):305-321.
[15]FU QF,LIU Y,FAN Y,et al.Alpha-enolase promotes cell glycolysis,growth,migration,and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway [J].J Hematol Oncol,2015,8:22.
[16]SUN L,LU T,TIAN K,et al.Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway [J].Eur J Pharmacol,2019,845:8-15.
[17]GATENBY RA,GILLIES RJ.Why do cancers have high aerobic glycolysis[J].Nat Rev Cancer,2004,4(11):891-899.
[18]BHATIA S,P WANG,A TOH,et al.New insights into the role of phenotypic plasticity and EMT in driving cancer progression [J].Front Mol Biosci,2020,7:71.
[19]FENDT SM,FREZZA C,EREZ A.Targeting metabolic plasticity and flexibility dynamics for cancer therapy [J].Cancer Discov,2020,10(12):1797-1807.
[20]MCDONALD OG,LI X,SAUNDERS T,et al.Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis [J].Nat Genet,2017,49(3):367-376.
[21]CHANO T,AVNET S,KUSUZAKI K,et al.Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells [J].Am J Cancer Res,2016,6(4):859-875.
[22]FLAVAHAN WA,DRIER Y,LIAU BB,et al.Insulator dysfunction and oncogene activation in IDH mutant gliomas [J].Nature,2016,529(7584):110-114.
[23]SCIACOVELLI M,GONCALVES E,JOHNSON TI,et al.Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition [J].Nature,2016,537(7621):544-547.
[24]WU D,HU D,CHEN H,et al.Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer [J].Nature,2018,559(7715):637-641.
[25]RAFFEL S,FALCONE M,KNEISEL N,et al.BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation [J].Nature,2017,551(7680):384-388.
[26]STEMMLER MP,ECCLES RL,BRABLETZ S,et al.Non-redundant functions of EMT transcription factors [J].Nat Cell Biol,2019,21(1):102-112.
[27]PRASAD CP,GOGIA A,BATRA A.Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis [J].Clin Transl Oncol,2022,24(10):1844-1855.
[28]YANG L,YAN X,CHEN J,et al.Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients [J].Proc Natl Acad Sci USA,2021,118(11):1-11.
[29]LI HJ,KE FY,LIN CC,et al.ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition [J].Cancer Res,2021,81(15):4094-4109.
[30]XIAO H,ZHANG L,CHEN Y,et al.PKM2 promotes breast cancer progression by regulating epithelial mesenchymal transition [J].Anal Cell Pathol (Amst),2020,2020:8396023.
[31]ZHANG Y,LIN S,CHEN Y,et al.LDH-A promotes epithelial-mesenchymal transition by upregulating ZEB2 in intestinal-type gastric cancer [J].Onco Targets Ther,2018,11:2363-2373.
[32]HOU X,SHI X,ZHANG W,et al.LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma [J].Cell Death Dis,2021,12(4):347.
[33]DAS CK,PAREKH A,PARIDA PK,et al.Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer [J].Biochim Biophys Acta Mol Cell Res,2019,1866(6):1004-1018.
[34]ZHAO H,DUAN Q,ZHANG Z,et al.Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells [J].J Cell Mol Med,2017,21(9):2055-2067.
[35]AZOITEI N,BECHER A,STEINESTEL K,et al.PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation [J].Mol Cancer,2016,15:3.
[36]ZHANG W,ZHANG X,HUANG S,et al.FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis [J].Mol Oncol,2021,15(5):1466-1485.
[37]YANG W,XIA Y,JI H,et al.Corrigendum:Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation [J].Nature,2017,550(7674):142.
[38]LI L,ZHANG Y,QIAO J,et al.Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting angiogenesis [J].J Biol Chem,2014,289(37):25812-25821.
[39]LI Z,YANG P,LI Z.The multifaceted regulation and functions of PKM2 in tumor progression [J].Biochim Biophys Acta,2014,1846(2):285-296.
[40]DE BOCK K,GEORGIADOU M,SCHOORS S,et al.Role of PFKFB3-driven glycolysis in vessel sprouting [J].Cell,2013,154(3):651-663.
[41]HUINEN ZR,HUIJBERS EJM,VAN BEIJNUM JR,et al.Anti-angiogenic agents-overcoming tumour endothelial cell anergy and improving immunotherapy outcomes [J].Nat Rev Clin Oncol,2021,18(8):527-540.
[42]XU Z,GUO C,YE Q,et al.Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization [J].Nat Commun,2021,12(1):6310.
[43]PAYEN VL,MINA E,VAN HEE VF,et al.Monocarboxylate transporters in cancer [J].Mol Metab,2020,33:48-66.
[44]WANG ZH,PENG WB,ZHANG P,et al.Lactate in the tumour microenvironment:From immune modulation to therapy [J].EBioMedicine,2021,73:103627.
[45]IPPOLITO L,MORANDI A,GIANNONI E,et al.Lactate:a metabolic driver in the tumour landscape [J].Trends Biochem Sci,2019,44(2):153-166.
[46]WATSON MJ,VIGNALI PDA,MULLETT SJ,et al.Metabolic support of tumour-infiltrating regulatory T cells by lactic acid [J].Nature,2021,591(7851):645-651.
[47]XIA H,WANG W,CRESPO J,et al.Suppression of FIP200 and autophagy by tumor-derived lactate promotes naive T cell apoptosis and affects tumor immunity [J].Sci Immunol,2017,2(17):1-29.
[48]BRAND A,SINGER K,KOEHL GE,et al.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells [J].Cell Metab,2016,24(5):657-671.
[49]COLEGIO OR,CHU NQ,SZABO AL,et al.Functional polarization of tumour-associated macrophages by tumour-derived lactic acid [J].Nature,2014,513(7519):559-563.
[50]DOHERTY JR,CLEVELAND JL.Targeting lactate metabolism for cancer therapeutics [J].J Clin Invest,2013,123(9):3685-3692.
[51]HIRSCHHAEUSER F,SATTLER UG,MUELLER-KLIESER W.Lactate:a metabolic key player in cancer [J].Cancer Res,2011,71(22):6921-6925.
[52]NIU D,LUO T,WANG H,et al.Lactic acid in tumor invasion [J].Clin Chim Acta,2021,522:61-69.
[53]KUNHIRAMAN H,EDATT L,THEKKEVEEDU S,et al.2-deoxy glucose modulates expression and biological activity of VEGF in a SIRT-1 dependent mechanism [J].J Cell Biochem,2017,118(2):252-262.
[54]JANG M,KIM SS,LEE J.Cancer cell metabolism:implications for therapeutic targets [J].Exp Mol Med,2013,45:e45.
[55]MALM SW,HANKE NT,GILL A,et al.The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines [J].J Exp Clin Cancer Res,2015,34:31.
[56]RAEZ LE,PAPADOPOULOS K,RICART AD,et al.A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors [J].Cancer Chemother Pharmacol,2013,71(2):523-530.
[57]GAO S,SONG D,LIU Y,et al.Helicobacter pylori CagA protein attenuates 5-Fu sensitivity of gastric cancer cells through upregulating cellular glucose metabolism [J].Onco Targets Ther,2020,13:6339-6349.
[58]YAKISICH JS,AZAD N,KAUSHIK V,et al.The biguanides metformin and buformin in combination with 2-deoxy-glucose or WZB-117 inhibit the viability of highly resistant human lung cancer cells [J].Stem Cells Int,2019,2019:6254269.

Memo

Memo:
National Natural Science Foundation of China(No.82073278);国家自然科学基金面上项目(编号:82073278);中国医学科学院医学与健康科技创新工程项目(编号:2021-I2M-1-067);分子肿瘤学国家重点实验室自主研究课题(编号:SKLMO-2021-17)
Last Update: 1900-01-01