|Table of Contents|

Analysis and prediction of the incidence trend of Chinese thyroid cancer

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2023 10
Page:
1917-1923
Research Field:
Publishing date:

Info

Title:
Analysis and prediction of the incidence trend of Chinese thyroid cancer
Author(s):
CUI Jing1ZHANG Qian2ZHANG Yi1
1.Hengshui City People's Hospital,Hebei Hengshui 053000,China;2.Hengshui Center for Disease Control and Prevention,Hebei Hengshui 053000,China.
Keywords:
KELM modelSVR modelthyroid cancercoupled modelkernel functionextreme learning machine
PACS:
R736.1
DOI:
10.3969/j.issn.1672-4992.2023.10.028
Abstract:
Objective:Through analysis of incidence of thyroid cancer in different groups in my country from 2003 to 2017,the KELM-SVR coupling model was used to model and predict the incidence of thyroid cancer from 2018 to 2022,and provide a useful supplement for the prevention and treatment of thyroid cancer.Methods:Collect the national total,male,female,urban and rural populations' incidence of thyroid cancer from 2003 to 2017.Establish KELM,SVR and KELM-SVR models,and select the KELM-SVR coupling model with the highest accuracy based on MRE to predict the incidence of different thyroid cancers from 2018 to 2022.Results:The KELM-SVR coupled model was superior to the KELM and SVR models in predicting the incidence of five different thyroid cancers.The average MRE of the KELM,SVR,and KELM-SVR models was 7.58%,6.59%,and 5.74%,respectively.The incidence of thyroid disease in my country was 17.07/100 000,18.40/100 000,19.80/100 000,21.23/100 000,and 22.71/100 000 from 2018 to 2022.Conclusion:The incidence of thyroid cancer is on a steady upward trend,and the incidence of thyroid cancer is the highest in women and urban populations.The KELM-SVR coupled model can improve the prediction accuracy of a single model and provide a stable and reliable method for predicting the incidence of various thyroid cancers.

References:

[1]文静,殷成宇,廖国伟,等.应用GM(1,1)灰色模型预测全国甲状腺癌发病趋势[J].现代肿瘤医学,2022,30(05):899-902. WEN J,YIN CY,LIAO GW,et al.Application of GM(1,1) model in predicting the incidence trend of thyroid cancer in China[J].Modern Oncology,2022,30(05):899-902.
[2]宋国惠,陈志峰,贺宇彤,等.河北省磁县2003-2007年恶性肿瘤发病率及地貌分类发病率情况分析[J].现代肿瘤医学,2013,21(9):2107-2114. SONG GH,CHEN ZF,HE YT,et al.An analysis of cancer incidence and landform classiflcation from 2003 to 2007 in Cixian,Hebei province China [J].Modern Oncology,2013,21(9):2107-2114.
[3]梁冰华,黄李凤.基于GM(1,1)灰色预测模型的中国医疗卫生资源预测分析[J].现代预防医学,2021,48(20):3655-3659. LIANG BH,HUANG LF.Prediction analysis of medical and health resources in China based on GM(1,1) grey prediction model[J].Modern Preventive Medicine,2021,48(20):3655-3659.
[4]周扬,梁士杰.ARIMA乘积季节模型在郑州市肺结核月发病趋势预测中的应用[J].中国卫生统计,2021,38(04):554-555. ZHOU Y,LIANG SJ.Application of ARIMA product seasonal model in the prediction of monthly incidence trend of pulmonary tuberculosis in Zhengzhou[J].China Health Statistics,2021,38(04):554-555.
[5]张倩,陈超.改进的GM(1,1)模型在衡水市乙肝发病率预测中的应用[J].现代预防医学,2017,44(11):1925-1928,1937. ZHANG Q,CHEN C.Application of improved GM(1,1) model in the prediction of hepatitis B incidence in Hengshui[J].Modern Preventive Medicine,2017,44(11):1925-1928,1937.
[6]鲍晓露,向国春,史卢少博,等.基于灰色GM(1,1)-SVM组合模型的广东省卫生总费用预测研究[J].现代预防医学,2022,49(05):856-859. BAO XL,XIANG GC,SHI LSB,et al.Prediction of total health expenditure in Guangdong Province based on grey GM(1,1)-SVM combination model [J].Modern Preventive Medicine,2022,49(05):856-859.
[7]张倩,陈超,夏晴,等.基于EMD分解的极端学习机模型在衡水市乙肝发病率预测中的应用[J].现代预防医学,2018,45(10):1733-1736,1749. ZHANG Q,CHEN C,XIA Q,et al.Application of extreme learning machine model based on EMD decomposition in the prediction of hepatitis B incidence in Hengshui city [J].Modern Preventive Medicine,2018,45(10):1733-1736,1749.
[8]陈雯,王旭,段辉宏,等.深度学习在癌症预后预测模型中的应用研究[J].生物医学工程学杂志,2020,37(05):918-929. CHEN W,WANG X,DUAN HH,et al.Application of deep learning in cancer prognosis prediction model [J].Journal of Biomedical Engineering,2020,37(05):918-929.
[9]张诗梦,莫颖宁,焦奥南,等.基于灰色系统理论的山东省卫生总费用预测及影响因素研究[J].现代预防医学,2022,49(05):851-855. ZHANG SM,MO YN,JIAO AN,et al.Research on forecasting and influencing factors of total health expenditure in Shandong province based on grey system theory [J].Modern Preventive Medicine,2022,49(05):851-855.
[10]裴洪,胡昌华,司小胜,等.基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报,2019,55(8):1-13. PEI H,HU CH,SI XS,et al.Overview of machine learning-based equipment remaining life prediction methods [J].Chinese Journal of Mechanical Engineering,2019,55(8):1-13.
[11]李斐,李舍予.全球甲状腺癌疾病负担[J].中国全科医学,2018,21(26):3155-3159. LI F,LI SY.Global burden of thyroid cancer[J].Chinese General Practice,2018,21(26):3155-3159.
[12]张元,李沁,白超.老年甲状腺癌患者术前血脂、尿酸水平与术后淋巴结转移的相关性[J].现代肿瘤医学,2021,29(15):2607-2611. ZHANG Y,LI Q,BAI C.Correlation between preoperative blood lipid,uric acid levels and postoperative cervical lymph node metastasis in senile patients with thyroid cancer[J].Modern Oncology,2021,29(15):2607-2611.
[13]杨雷,郑荣寿,王宁,等.2013年中国甲状腺癌发病与死亡情况[J].中华肿瘤杂志,2017,39(11):862-867. YANG L,ZHENG RS,WANG N,et al.Incidence and mortality of thyroid cancer in China in 2013 [J].Chinese Journal of Oncology,2017,39(11):862-867.
[14]延常姣,黄美玲,肖晶晶,等.甲状腺癌相关多原发癌的临床及病理特征分析[J].现代肿瘤医学,2020,28(01):40-43. YAN CJ,HUANG ML,XIAO JJ,et al.Clinicopathologic features of multiple primary cancers involving thyroid carcinomas[J].Modern Oncology,2020,28(01):40-43.
[15]韩婧,康骅.甲状腺癌的发病现状及影响因素[J].实用预防医学,2018,25(07):894-897. HAN J,KANG H.The incidence and influencing factors of thyroid cancer[J].Practical preventive medicine,2018,25(07):894-897.

Memo

Memo:
河北省医学科学研究重点课题(编号:20181582)
Last Update: 1900-01-01