[1]PETERSSON F.Nasopharyngeal carcinoma:a review Semin[J].Diagn Pathol,2015,32(1):54-73.
[2]BADOUAL C.Update from the 5th edition of the World Health Organization classification of head and neck tumors:Oropharynx and nasopharynx[J].Head Neck Pathol,2022,16(1):19-30.
[3]LI N,LI P.Effects of different chemoradiotherapy regimens on early survival outcomes in patients with locally advanced nasopharyngeal carcinoma[J].Journal of Sichuan University(Medical Science),2020,51(5):702-707.
[4] HOLMES JH,SACCHI L,BELLAZ ZI,et al.Artificial Intelligence in medicine AIME 2015[J].Artif Intell Med,2017,81:1-2.
[5] TOPOL E.High-performance medicine:the convergence of human and artificial intelligence[J].Nat Med,2019,25(1):44-56.
[6] ERICKSON BJ,KORFIATIS P,AKKUS Z,et al.Machine learning for medical imaging[J].Radiographics,2017,37(2):505-515.
[7] TOMITA H,YAMSHIRO T,IIDA G,et al.Unenhanced CT texture analysis with machine learning for differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma[J].Nagoya J Med Sci,2021,83(1):135-149.
[8] SONG L,LI Y,DONG G,et al.Artificial intelligence-based bone-enhanced magnetic resonance image-a computed tomography/magnetic resonance image composite image modality in nasopharyngeal carcinoma radiotherapy[J].Quant Imaging Med Surg,2021,11(12):4709-4720.
[9] DU D,FENG H,LYU W,et al.Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation:Application to nasopharyngeal carcinoma post-therapy PET/CT images[J].Mol Imaging Biol,2020,22(3):730-738.
[10] WU B,KHONG PL,CHAN T,et al.Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine[J].Int J Comput Assist Radiol Surg,2012,7(4):635-646.
[11] DAOUD B,MOROOKA K,KURAZUME R,et al.3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning[J].Comput Med Imaging Graph,2019,77:101644.
[12] WU B,KHONG PL,CHAN T,et al.Preliminary study of 11C-choline PET/CT for T staging of locally advanced nasopharyngeal carcinoma:comparison with 18F-FDG PET/CT[J].J Nucl Med 2011,52(3):341-346.
[13] ZHAO W,ZHANG D,MAO X,et al.Application of artificial intelligence in radiotherapy of nasopharyngeal carcinoma with magnetic resonance imaging[J].J Healthc Eng,2022,2022:4132989.
[14] LIN L,DOU Q,JIN YM,et al.Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J].Radiology,2019,291(3):677-686.
[15] MA Z,ZHOU S,WU X,et al.Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning[J].Phys Med Biol,2019,64(2):025005.
[16] WONG LM,AI QYH,MO FKF,et al.Convolutional neural network in nasopharyngeal carcinoma:how good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI[J].Jpn J Radiol,2021,39(6):571-579.
[17] LEE N,HARRIS J,GARDEN AS,et al.Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma:radiation therapy oncology group phase Ⅱ trial 0225[J].J Clin Oncol,2009,27(22):3684-3690.
[18] QIANG M,LI C,SUN Y,et al.A prognostic predictive system based on deep learning for locoregionally advanced nasopharyngeal carcinoma[J].J Natl Cancer Inst,2021,113(5):606-615.
[19] ZHANG L,WU X,LIU J,et al.MRI-based deep-learning model for distant metastasis-free survival in locoregionally advanced nasopharyngeal carcinoma[J].J Magn Reson Imaging,2021,53(1):167-178.
[20] ZHANG B,LIAN Z,ZHONG L,et al.Machine-learning based MRI radiomics models for early detection of radiation-induced brain injury in nasopharyngeal carcinoma[J].BMC Cancer,2020,20(1):502.
[21] CUI C,WANG S,ZHOU J,et al.Machine learning analysis of image data based on detailed MR image reports for nasopharyngeal carcinoma prognosis[J].Biomed Res Int,2020,2020:8068913.
[22] CHEN X,LI Y,LI X,et al.An interpretable machine learning prognostic system for locoregionally advanced nasopharyngeal carcinoma based on tumor burden features[J].Oral Oncol,2021,118(2):105335.
[23] JING B,DENG Y,ZHANG T,et al.Deep learning for risk prediction in patients with nasopharyngeal carcinoma using multi-parametric MRI[J].sComput Methods Programs Biomed,2020,197:105684.
[24] ZHONG LZ,FANG XL,DONG D,et al.A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0[J].Radiother Oncol,2020,151:1-9.
[25] ZHONG LZ,DONG D,FANG XL,et al.A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma:A multicentre study[J].EBio Medicine,2021,70:103522.
[26] PENG H,DONG D,FANG MJ,et al.Prognostic value of deep learning PET/CT-based radiomics:Potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma[J].Clin Cancer Res,2019,25(14):4271-4279.
[27] CHUANG WY,CHANG SH,YU WH,et al.Successful identification of nasopharyngeal carcinoma in nasopharyngeal biopsies using deep learning[J].Cancers(Basel),2020,12(2):507.
[28] ZHANG F,ZHONG LZ,ZHAO X,et al.A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma:a multi-cohort study[J].Ther Adv Med Oncol,2020,12:431380840.
[29] DIAO S,HOU J,YU H,et al.Computer-aided pathologic diagnosis of nasopharyngeal carcinoma based on deep learning[J].Am J Pathol,2020,190(8):1691-1700.
[30] LIU K,XIA W,QIANG M,et al.Deep learning pathological microscopic features in endemic nasopharyngeal cancer:Prognostic value and potential role for individual induction chemotherapy[J].Cancer Med,2020,9(4):1298-1306.
[31] WAN XB,ZHAO Y,FAN XJ,et al.Molecular prognostic prediction for locally advanced nasopharyngeal carcinoma by support vector machine integrated approach[J].PLoS One,2012,7(3):e31989.
[32] LI C,JING B,KE L,et al.Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies[J].Cancer Commun(Lond),2018,38(1):59.
[33] SHU C,YAN H,ZHENG W,et al.Deep learning-guided fiberoptic Raman spectroscopy enables real-time in vivo diagnosis and assessment of nasopharyngeal carcinoma and post-treatment efficacy during endoscopy[J].Anal Chem,2021,93(31):10898-10906.
[34] XU J,WANG J,BIAN X,et al.Deep learning for nasopharyngeal carcinoma identification using both white light and narrow-band imaging endoscopy[J].Laryngoscope,2022,132(5):999-1007.