[1] GONZALEZ-FIERRO A,DUENAS-GONZALEZ A.Drug repurposing for cancer therapy,easier said than done[J].Semin Cancer Biol,2019,12(68):123-131.
[2] JEONG YP,JUNG YL,YOO YL,et al.Major clinical research advances in gynecologic cancer in 2021[J].J Clin Oncol,2021,33(2):e43(1-16).
[3] JING L,HONG JL,YING LL,et al.Programmable delivery of immune adjuvant to tumor infiltrating dendritic cells for cancer immunotherapy[J].Nano Letter,2020,20(7):4882-4889.
[4] RILEY RS,JUNE CH,LANGER R,et al.Delivery technologies for cancer immunotherapy[J].Nat Rev Drug Discov,2019,18(3):175-196.
[5] NGUYEN DN,ROTH TL,LI PJ,et al.Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency[J].Nat Biotechnol,2020,38(1):44-49.
[6] XU YX,CHEN C,GUO YX,et al.Effect of CRISPR/Cas9-edited PD-1/PD-L1 on tumor immunity and immunotherapy[J].Front Immunol,2022,13:848327(1-14).
[7] HAN C,TANG C,YIN C.Multifunctional magnetic nanocarriers for delivery of siRNA and shRNA plasmid to mammalian cells:Characterization,adsorption and release behaviors[J].Colloid Surface B,2022,219:112861(1-9).
[8] JOYDERB M,TAMARA M.Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery[J].Expert Opin Drug Del,2021,18(2):205-227.
[9] MOHAMMADINEJA R,EHSHAHRI A,ZARRABI A,et al.In vivo gene delivery mediated by non-viral vectors for cancer therapy[J].Journal Control Release,2020,325(10):249-275.
[10] PAN L,WANG Z,LI Y,et al.Nicking enzyme-controlled toehold regulation for DNA logic circuits[J].Nanoscale,2017,9(46):18223-18228.
[11] KE XY,WEI ZH,MAO HQ,et al.Subtle changes in surface-tethered groups on PEGylated DNA nanoparticles significantly influence gene transfection and cellular uptake[J].Nanomedicine,2019,19:126-135.
[12] RAHUL U,SHASHANK K.Automation and data-driven design of polymer therapeutics[J].Nat Rev Drug Discov,2021,171:1-28.
[13] PARK JW.Mechanical stimulation after centrifuge-free nano-electroporative transfection is efficient and maintains long-term T cell functionalities[J].SMALL,2021,17(38):e2103198.
[14] HAN K,JIA Y,KRISHNAN L.Archaeal lipid vaccine adjuvants for induction of cell-mediated immunity[J].Expert Rev Vaccines,2016,15(12):1557-1566.
[15] QIU Y,GUO L,ZHANG S,et al.Liposomal and CpG-ODN formulation elicits strong humoral immune responses to recombinant staphylococcus aureus antigens in heifer calves[J].Vet Immunol Immunop,2019,212:1-8.
[16] LIU L,ZONG ZM,LIU Q,et al.A novel galactose-PEG-conjugated biodegradable copolymer is an efficient gene delivery vector for immunotherapy of hepatocellular carcinoma[J].Biomaterials,2018,184:20-30.
[17] WILKISON A,LATTMANN E,ROCES CB,et al.Lipid conjugation of TLR7 agonist resiquimod ensures co-delivery with the liposomal cationic adjuvant formulation 01 (CAF01) but does not enhance immunopotentiation compared to non-conjugated resiquimod CAF01[J].J Control Release,2018,291:1-10.
[18] ZHANG F,STEPHAN SB,ENE CI,et al.Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies[J].Cancer Res,2018,78(13):3718-3730.
[19] MOHANTY R,CHOWDHURY CR,AREGA S,et al.CAR-T cell therapy:a new era for cancer treatment (Review)[J].Oncol Rep,2019,42(6):2183-2195.
[20] WOLFF JA,MALONE RW,WILLIAMS P,et al.Direct gene transfer into mouse muscle in vivo[J].Science,1990,247(4949):1465-1468.
[21] ZHU G,MEI L,VISHWASRAO HD,et al.Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy[J].Nat Commun,2017,8(1):1482(1-13).
[22] KURT S,TOMATIR AG,TOKGUN PE,et al.Altered expression of long non-coding RNAs in peripheral blood mononuclear cells of patients with Alzheimer's disease[J].Mol Neurobiol,2020,57(12):5352-5361.
[23] ZHANG W,LI Y,WANG P.Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury[J].Braz J Med Biol Res,2018,51(6):e6555(1-11).
[24] RENMAN E,BRINK M,LEJON K,et al.Dysregulated microRNA expression in rheumatoid arthritis families-a comparison between rheumatoid arthritis patients,their first-degree relatives,and healthy controls[J].Clin Rheumatol,2021,40(6):2387-2394.
[25] XU F,LIAO JZ,XIANG GY,et al.MiR-101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma[J].Cancer Med,2017,6(3):651-661.
[26] SAYOUR EJ,GRIPPIN A,DELEON G,et al.Personalized tumor RNA loaded lipid- nanoparticles prime the systemic and intratumoral milieu for response to cancer immunotherapy[J].Nano Lett,2018,18(10):6195-6206.
[27] OBERLI MA,REICHMUTH AM,DORKIN JR,et al.Lipid nanoparticles sassisted mRNA delivery for potent cancer immunotherapy[J].Nano Lett,2017,17(3):1326-1335.
[28] QIAN Y,QIAO S,DAI Y,et al.Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages[J].ACS Nano,2017,11(9):9536-9549.
[29] GUAN X,LIN L,CHEN J,et al.Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy[J].J Control Release,2019,293:104-112.
[30] KHANA H,KHAN A,XIONG T,et al.CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2[J].Chinese Chemical Letters,2019,30(12):2201-2204.
[31] ZHAO J,LI B,MA JX,et al.Photoactivatable RNA N6-methyladenosine editing with CRISPR-Cas13[J].Small,2020,16(30):e1907301(1-8).
[32] ZHANG Z,WANG Q,LIU Q,et al.Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy[J].Adv Mater,2019,31(51):e1905751(1-10).
[33] YU WD,SUN G,WANG XC,et al.Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy[J].Cancer Letters,2019,452:66-70.
[34] GALUZZI L,BUQUE A,KEPP O,et al.Immunogenic cell death in cancer and infectious disease[J].Nat Rev Immunol,2017,17(2):97-111.
[35] DAI Z,TANG J,GU Z,et al.Eliciting immunogenic cell death via a unitized nanoinducer[J].Nano Lett,2020,20(9):6246-6254.
[36] SONG W,SHEN L,WANG Y,et al.Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap[J].Nat Commun,2018,9(1):2237(1-11).
[37] DUONG HTT,THAMBI T,YIN Y,et al.Smart pH responsive nanocube controlled delivery of DNA vaccine and chemotherapeutic drugs for chemoimmunotherapy[J].ACS Appl Mater Interfaces,2019,11(14):13058-13068.
[38] SANEJA A,KUMAR R,ARORA D,et al.Recent advances in near-infrared light-responsive nanocarriers for cancer therapy[J].Drug Discov Today,2018,23(5):1115-1125.
[39] ZHANG Y,FENG Y,HUANG Y,et al.Tumor targeted gene silencing IDO synergizes PTT induced apoptosis and enhances anti tumor immunity[J].Front Immunol,2020,11:968(1-15).
[40] ZHOU J,LIU YX,LI LY,et al.DNA-templated porous nanoplatform towards programmed "double-hit" cancer therapy via hyperthermia and immunogenicity activation[J].Biomaterials,2019,219:119395(1-11).
[41] HOU X,TAO Y,PANG Y,et al.Nanoparticles based photothermal and photodynamic immunotherapy for tumor treatment[J].Int J Cancer,2018,143(12):3050-3060.
[42] YANG MY,LI JP,FAN XQ,et al.The application of nanoparticles in cancer immunotherapy:Targeting tumor microenvironment[J].Bioact Mater,2020,6(7):1973-1987.
[43] YANG C,FU YY,QIAN ZY,et al.Chlorin e6 and CRISPR Cas9 dual loading system with deep penetration for a synergistic tumoral photodynamic immunotherapy[J].Biomaterials,2020,255:120194(1-18).
[44] SONG Y,TANG C,YIN C,et al.Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor associated macrophages and breast cancer cells[J].Biomaterials,2018,185:117-132.