[1]李晨,甘雪琦.线粒体与骨髓间充质干细胞成骨分化关系的研究进展[J].口腔医学研究,2023,39(01):11-14.
LI C,GAN XQ.Research advances in relationship between mitochondria and osteogenic differentiation of bone marrow mesenchymal stem cells [J].Journal of Oral Science Research,2023,39(01):11-14.
[2] JIANG HW,JEDOUI M,YE JB.The Warburg effect drives dedifferentiation through epigenetic reprogramming[J].Cancer Biology & Medicine,2024,20(12):891-897.
[3] ROGER AJ,MUNOZ-GOMEZ SA,KAMIKAWA R.The origin and diversification of mitochondria [J].Current Biology,2017,27(21):R1177-R1192.
[4] BURK D,SCHADE AL.On respiratory impairment in cancer cells[J].Science,1956,124(3215):270-272.
[5] SEYFRIED TN,ARISMENDI-MORILLO G,MUKHERJEE P,et al.On the origin of ATP synthesis in cancer[J].iScience,2020,23(11):101761.
[6] AMATO I,MEURANT S,RENARD P.The key role of mitochondria in somatic stem cell differentiation:From mitochondrial asymmetric apportioning to cell fate [J].International Journal of Molecular Science,2023,24(15):12181.
[7] PROTASONI M,ZEVIANI M.Mitochondrial structure and bioenergetics in normal and disease conditions[J].International Journal of Molecular Science,2021,22(2):586.
[8] SINGH R,JAIN A,PALANICHAMY JK,et al.Ultrastructural changes in cristae of lymphoblasts in acute lymphoblastic leukemia parallel alterations in biogenesis markers[J].Applied Microscopy,2021,51(1):20.
[9] ZHENG XX,CHEN JJ,SUN YB,et al.Mitochondria in cancer stem cells:Achilles heel or hard armor[J].Trends in Cell Biology,2023,33(8):708-727.
[10] JOGALEKAR MP,SERRANO EE.Morphometric analysis of a triple negative breast cancer cell line in hydrogel and monolayer culture environments[J].PeerJ,2018,6:e4340.
[11] ARISMENDI-MORILLO G,CASTELLANO-RAMIREZ A,SEYFRIED TN.Ultrastructural characterization of the Mitochondria-associated membranes abnormalities in human astrocytomas:Functional and therapeutics implications[J].Ultrastructural Pathology,2017,41(3):234-244.
[12] COGLIATI S,ENRIQUEZ JA,SCORRANO L.Mitochondrial cristae:Where beauty meets functionality[J].Trends in Biochemical Sciences,2016,41(3):261-273.
[13] UNWIN RD,CRAVEN RA,HARNDEN P,et al.Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect[J].Proteomics,2003,3(8):1620-1632.
[14]ZHANG L,LIU MR,YAO YC,et al.Characterization and structure of glyceraldehyde-3-phosphate dehydrogenase type 1 from Escherichia coli[J].Acta Crystallogr F Struct Biol Commun,2020,76(Pt 9):406-413.
[15] SIMONNET H,ALAZARD N,PFEIFFER K,et al.Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma[J].Carcinogenesis,2002,23(5):759-768.
[16] FEICHTINGER RG,WEIS S,MAYR JA,et al.Alterations of oxidative phosphorylation complexes in astrocytomas[J].Glia,2014,62(4):514-525.
[17] JIANG H,GREATHOUSE RL,TICHE SJ,et al.Mitochondrial uncoupling induces epigenome remodeling and promotes differentiation in neuroblastoma[J].Cancer Research,2023,83(2):181-194.
[18] ZHANG W,SVIRIPA VM,KRIL LM,et al.An underlying mechanism of dual Wnt inhibition and AMPK activation:Mitochondrial incouplers masquerading as Wnt inhibitors[J].Journal of Medicinal Chemistry,2019,62(24):11348-11358.
[19] PARADIES G,PARADIES V,DE BENEDICTIS V,et al.Functional role of cardiolipin in mitochondrial bioenergetics[J].Biochimica et Biophysica Acta,2014,1837(4):408-417.
[20] MUSATOV A,SEDLAK E.Role of cardiolipin in stability of integral membrane proteins[J].Biochimie,2017,142:102-111.
[21] LI Y,LOU W,RAJA V,et al.Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function[J].The Journal of Biological Chemistry,2019,294(30):11568-11578.
[22] JISHI M,PATEL BM.Unveiling the role of the proton gateway,uncoupling proteins(UCPs),in cancer cachexia[J].Cancers,2023,15(5):1407.
[23] SUN L,ZHANG H,GAO P.Metabolic reprogramming and epigenetic modifications on the path to cancer[J].Protein & Cell,2022,13(12):877-919.
[24] XU X,PENG Q,JIANG X,et al.Metabolic reprogramming and epigenetic modifications in cancer:from the impacts and mechanisms to the treatment potential[J].Exp Mol Med,2023,55(7):1357-1370.
[25] LI Y,GRUBER JJ,LITZENBURGER UM,et al.Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia[J].Cell Death & Disease,2020,11(2):102.
[26] LI AM,HE B,KARAGIANNIS D,et al.Serine starvation silences estrogen receptor signaling through histone hypoacetylation[J].Proceedings of the National Academy of Sciences of the United States of America,2023,120(38):e2302489120.
[27]章婷婷,赵调红,陈圆圆,等.组蛋白乳酸化修饰在恶性肿瘤中的研究进展[J].现代肿瘤医学,2024,32(06):1137-1141.
ZHANG TT,ZHAO TH,CHEN YY,et al.Advances in histone lactate modification in malignant tumors [J].Modern Oncology,2024,32(06):1137-1141.
[28] JIE Y,PEIWEI C,MINYUE X,et al.Histonelactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma[J].Genome Biology,2021,22(1):85.
[29] YANG J,LUO L,ZHAO C,et al.A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression[J].International Journal of Biological Sciences,2022,18(8):3470-3483.
[30] MIAO Z,ZHAO X,LIU X.Hypoxia induced β-catenin lactylation promotes the cell proliferation and stemness of colorectal cancer through the wnt signaling pathway[J].Experimental Cell Research,2023,422(1):113439.
[31] MCCABE MT,MOHAMMAD HP,BARBASH O,et al.Targeting histone methylation in cancer[J].Cancer Journal(Sudbury,Mass),2017,23(5):292-301.
[32]潘云枫,王演怡,陈静雯,等.线粒体代谢介导的表观遗传改变与衰老研究[J].遗传,2019,41(10):893-904.
PAN YF,WANG YY,CHEN JW,et al.Mitochondrial metabolism's effect on epigenetic changeand aging [J].Hereditas,2019,41(10):893-904.
[33]韩勖,罗凤宝,马旭怡.组蛋白甲基转移酶NSD3对肾癌细胞增殖、侵袭及迁移的影响[J].临床与病理杂志,2023,43(12):2063-2070.
HAN X,LUO FB,MA XY.Effect of histone methyltransferase NSD3 on the proliferation,invasion,and migration of renal cancer cells [J].Journal of Clinical and Pathological Research,2023,43(12):2063-2070.
[34] TOPCHU I,PANGENI RP,BYCHKOV I,et al.The role of NSD1,NSD2,and NSD3 histone methyltransferases in solid tumors[J].Cellular and Molecular Life Sciences,2022,79(6):285.
[35] AYTES A,GIACOBBE A,MITROFANOVA A,et al.NSD2 is a conserved driver of metastatic prostate cancer progression[J].Nature Communications,2018,9(1):5201.
[36] SONG D,LAN J,CHEN Y,et al.NSD2 promotes tumor angiogenesis through methylating and activating STAT3 protein[J].Oncogene,2021,40(16):2952-2967.
[37] TAN M,LUO H,LEE S,et al.Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification[J].Cell,2011,146(6):1016-1028.
[38] LI Q,HOPPE T.Role of amino acid metabolism in mitochondrial homeostasis[J].Frontiers in Cell and Developmental Biology,2023,11:1127618.
[39] WAN J,LIU H,CHU J,et al.Functions and mechanisms of lysine crotonylation[J].Journal of Cellular and Molecular Medicine,2019,23(11):7163-7169.
[40] YUAN H,WU X,WU Q,et al.Lysine catabolism reprograms tumour immunity through histone crotonylation[J].Nature,2023,617(7962):818-826.
[41]WAN J,LIU H,MING L.Lysine crotonylation is involved in hepatocellular carcinoma progression[J].Biomed Pharmacother,2019,111:976-982.
[42] FELLOWS R,DENIZOT J,STELLATO C,et al.Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases[J].Nat Commun,2018,9(1):105.
[43] JONES PA.Functions of DNA methylation:islands,start sites,gene bodies and beyond[J].Nature Reviews Genetics,2012,13(7):484-492.
[44] JONES PA,ISSA JP,BAYLIN S.Targeting the cancer epigenome for therapy[J].Nature Reviews Genetics,2016,17(10):630-641.
[45] HENRICH KO,BENDER S,SAADATI M,et al.Integrative genome-scale analysis identifies epigenetic mechanisms of transcriptional deregulation in unfavorable neuroblastomas[J].Cancer Research,2016,76(18):5523-5537.
[46] FENG J,ZHANG Y,SHE X,et al.Hypermethylated gene ANKDD1A is a candidate tumor suppressor that interacts with FIH1 and decreases HIF1α stability to inhibit cell autophagy in the glioblastoma multiforme hypoxia microenvironment[J].Oncogene,2019,38(1):103-119.
[47] GUO X,YANG N,JI W,et al.Mito-bomb:Targeting mitochondria for cancer therapy[J].Adv Mater,2021,33(43):e2007778.
[48] DE A,KUPPUSAMYG.Metformin in breast cancer:preclinical and clinical evidence[J].Current Problems in Cancer,2020,44(1):100488.
[49] KAMARUDIN MNA,SARKER MMR,ZHOU JR,et al.Metformin in colorectal cancer:molecular mechanism,preclinical and clinical aspects[J].Journal of Experimental & Clinical Cancer Research,2019,38(1):491.
[50]VASAN K,WERNER M,CHANDEL NS.Mitochondrial metabolism as a target for cancer therapy[J].Cell Metab,2020,32(3):341-352.
[51]TERAO M,GORACCI L,CELESTINI V,et al.Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid[J].J Exp Clin Cancer Res,2019,38(1):436.
[52] MCCALL CE,ZABALAWI M,LIU T,et al.Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival [J].JCI Insight,2018,3(15):e99292.
[53] CHAO Y,LIU Z.Biomaterials tools to modulate the tumour microenvironment in immunotherapy[J].Nat Rev Bioeng,2023,1:125-138.
[54]HOLT RD.Bringing the Hutchinsonian niche into the 21st century:ecological and evolutionary perspectives[J].Proc Natl Acad Sci USA,2009,106(Suppl 2):19659-19665.
[55]LI Z,SUN C,QIN Z.Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming[J].Theranostics,2021,11(17):8322-8336.
[56] BANTUG GR,HESS C.The immunometabolic ecosystem in cancer[J].Nat Immunol,2023,24(12):2008-2020.
[57] HUO M,ZHANG J,HUANG W,et al.Interplay among metabolism,epigenetic modifications,and gene expression in cancer[J].Frontiers in Cell and Developmental Biology,2021,9:793428.
[58]SAINERO-ALCOLADO L,LIANO-PONS J,RUIZ-PEREZ MV,et al.Targeting mitochondrial metabolism for precision medicine in cancer[J].Cell Death Differ,2022,29(7):1304-1317.
[59] PENG H,YAO F,ZHAO J,et al.Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials[J].Exploration(Beijing),2023,3(2):20220115.