|Table of Contents|

The research progress on the role of mitochondrial oxidative phosphorylation dysfunction in driving tumorigenesis and development

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2025 05
Page:
850-856
Research Field:
Publishing date:

Info

Title:
The research progress on the role of mitochondrial oxidative phosphorylation dysfunction in driving tumorigenesis and development
Author(s):
XIE WenliFENG Zhihui
Department of Occupational Health and Occupational Medicine,School of Public Health,Shandong University,Shandong Jinan 250012,China.
Keywords:
tumormitochondriametabolic reprogrammingepigenetics
PACS:
R730
DOI:
10.3969/j.issn.1672-4992.2025.05.020
Abstract:
It has been reported that mitochondrial respiration plays a key role in controlling epigenetic inheritance,and further studies reveal that mitochondrial respiratory dysfunction can alter the metabolic pathways of highly differentiated somatic cells,remodeling epigenetic inheritance and leading to the dedifferentiation of somatic cells,which transforms them into tumor cells and drives tumorigenesis.With the in-depth study of the mitochondrial-epigenetic regulatory axis in tumorigenesis and development,mitochondria and epigenome are expected to become new targets for tumor therapy.This article mainly reviews the research progress on the role of mitochondrial oxidative phosphorylation function abnormality-induced epigenetic remodeling in driving tumorigenesis and development,aiming to provide new ideas and methods of more clinical value for tumor prevention and treatment.

References:

[1]李晨,甘雪琦.线粒体与骨髓间充质干细胞成骨分化关系的研究进展[J].口腔医学研究,2023,39(01):11-14. LI C,GAN XQ.Research advances in relationship between mitochondria and osteogenic differentiation of bone marrow mesenchymal stem cells [J].Journal of Oral Science Research,2023,39(01):11-14.
[2] JIANG HW,JEDOUI M,YE JB.The Warburg effect drives dedifferentiation through epigenetic reprogramming[J].Cancer Biology & Medicine,2024,20(12):891-897.
[3] ROGER AJ,MUNOZ-GOMEZ SA,KAMIKAWA R.The origin and diversification of mitochondria [J].Current Biology,2017,27(21):R1177-R1192.
[4] BURK D,SCHADE AL.On respiratory impairment in cancer cells[J].Science,1956,124(3215):270-272.
[5] SEYFRIED TN,ARISMENDI-MORILLO G,MUKHERJEE P,et al.On the origin of ATP synthesis in cancer[J].iScience,2020,23(11):101761.
[6] AMATO I,MEURANT S,RENARD P.The key role of mitochondria in somatic stem cell differentiation:From mitochondrial asymmetric apportioning to cell fate [J].International Journal of Molecular Science,2023,24(15):12181.
[7] PROTASONI M,ZEVIANI M.Mitochondrial structure and bioenergetics in normal and disease conditions[J].International Journal of Molecular Science,2021,22(2):586.
[8] SINGH R,JAIN A,PALANICHAMY JK,et al.Ultrastructural changes in cristae of lymphoblasts in acute lymphoblastic leukemia parallel alterations in biogenesis markers[J].Applied Microscopy,2021,51(1):20.
[9] ZHENG XX,CHEN JJ,SUN YB,et al.Mitochondria in cancer stem cells:Achilles heel or hard armor[J].Trends in Cell Biology,2023,33(8):708-727.
[10] JOGALEKAR MP,SERRANO EE.Morphometric analysis of a triple negative breast cancer cell line in hydrogel and monolayer culture environments[J].PeerJ,2018,6:e4340.
[11] ARISMENDI-MORILLO G,CASTELLANO-RAMIREZ A,SEYFRIED TN.Ultrastructural characterization of the Mitochondria-associated membranes abnormalities in human astrocytomas:Functional and therapeutics implications[J].Ultrastructural Pathology,2017,41(3):234-244.
[12] COGLIATI S,ENRIQUEZ JA,SCORRANO L.Mitochondrial cristae:Where beauty meets functionality[J].Trends in Biochemical Sciences,2016,41(3):261-273.
[13] UNWIN RD,CRAVEN RA,HARNDEN P,et al.Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect[J].Proteomics,2003,3(8):1620-1632.
[14]ZHANG L,LIU MR,YAO YC,et al.Characterization and structure of glyceraldehyde-3-phosphate dehydrogenase type 1 from Escherichia coli[J].Acta Crystallogr F Struct Biol Commun,2020,76(Pt 9):406-413.
[15] SIMONNET H,ALAZARD N,PFEIFFER K,et al.Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma[J].Carcinogenesis,2002,23(5):759-768.
[16] FEICHTINGER RG,WEIS S,MAYR JA,et al.Alterations of oxidative phosphorylation complexes in astrocytomas[J].Glia,2014,62(4):514-525.
[17] JIANG H,GREATHOUSE RL,TICHE SJ,et al.Mitochondrial uncoupling induces epigenome remodeling and promotes differentiation in neuroblastoma[J].Cancer Research,2023,83(2):181-194.
[18] ZHANG W,SVIRIPA VM,KRIL LM,et al.An underlying mechanism of dual Wnt inhibition and AMPK activation:Mitochondrial incouplers masquerading as Wnt inhibitors[J].Journal of Medicinal Chemistry,2019,62(24):11348-11358.
[19] PARADIES G,PARADIES V,DE BENEDICTIS V,et al.Functional role of cardiolipin in mitochondrial bioenergetics[J].Biochimica et Biophysica Acta,2014,1837(4):408-417.
[20] MUSATOV A,SEDLAK E.Role of cardiolipin in stability of integral membrane proteins[J].Biochimie,2017,142:102-111.
[21] LI Y,LOU W,RAJA V,et al.Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function[J].The Journal of Biological Chemistry,2019,294(30):11568-11578.
[22] JISHI M,PATEL BM.Unveiling the role of the proton gateway,uncoupling proteins(UCPs),in cancer cachexia[J].Cancers,2023,15(5):1407.
[23] SUN L,ZHANG H,GAO P.Metabolic reprogramming and epigenetic modifications on the path to cancer[J].Protein & Cell,2022,13(12):877-919.
[24] XU X,PENG Q,JIANG X,et al.Metabolic reprogramming and epigenetic modifications in cancer:from the impacts and mechanisms to the treatment potential[J].Exp Mol Med,2023,55(7):1357-1370.
[25] LI Y,GRUBER JJ,LITZENBURGER UM,et al.Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia[J].Cell Death & Disease,2020,11(2):102.
[26] LI AM,HE B,KARAGIANNIS D,et al.Serine starvation silences estrogen receptor signaling through histone hypoacetylation[J].Proceedings of the National Academy of Sciences of the United States of America,2023,120(38):e2302489120.
[27]章婷婷,赵调红,陈圆圆,等.组蛋白乳酸化修饰在恶性肿瘤中的研究进展[J].现代肿瘤医学,2024,32(06):1137-1141. ZHANG TT,ZHAO TH,CHEN YY,et al.Advances in histone lactate modification in malignant tumors [J].Modern Oncology,2024,32(06):1137-1141.
[28] JIE Y,PEIWEI C,MINYUE X,et al.Histonelactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma[J].Genome Biology,2021,22(1):85.
[29] YANG J,LUO L,ZHAO C,et al.A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression[J].International Journal of Biological Sciences,2022,18(8):3470-3483.
[30] MIAO Z,ZHAO X,LIU X.Hypoxia induced β-catenin lactylation promotes the cell proliferation and stemness of colorectal cancer through the wnt signaling pathway[J].Experimental Cell Research,2023,422(1):113439.
[31] MCCABE MT,MOHAMMAD HP,BARBASH O,et al.Targeting histone methylation in cancer[J].Cancer Journal(Sudbury,Mass),2017,23(5):292-301.
[32]潘云枫,王演怡,陈静雯,等.线粒体代谢介导的表观遗传改变与衰老研究[J].遗传,2019,41(10):893-904. PAN YF,WANG YY,CHEN JW,et al.Mitochondrial metabolism's effect on epigenetic changeand aging [J].Hereditas,2019,41(10):893-904.
[33]韩勖,罗凤宝,马旭怡.组蛋白甲基转移酶NSD3对肾癌细胞增殖、侵袭及迁移的影响[J].临床与病理杂志,2023,43(12):2063-2070. HAN X,LUO FB,MA XY.Effect of histone methyltransferase NSD3 on the proliferation,invasion,and migration of renal cancer cells [J].Journal of Clinical and Pathological Research,2023,43(12):2063-2070.
[34] TOPCHU I,PANGENI RP,BYCHKOV I,et al.The role of NSD1,NSD2,and NSD3 histone methyltransferases in solid tumors[J].Cellular and Molecular Life Sciences,2022,79(6):285.
[35] AYTES A,GIACOBBE A,MITROFANOVA A,et al.NSD2 is a conserved driver of metastatic prostate cancer progression[J].Nature Communications,2018,9(1):5201.
[36] SONG D,LAN J,CHEN Y,et al.NSD2 promotes tumor angiogenesis through methylating and activating STAT3 protein[J].Oncogene,2021,40(16):2952-2967.
[37] TAN M,LUO H,LEE S,et al.Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification[J].Cell,2011,146(6):1016-1028.
[38] LI Q,HOPPE T.Role of amino acid metabolism in mitochondrial homeostasis[J].Frontiers in Cell and Developmental Biology,2023,11:1127618.
[39] WAN J,LIU H,CHU J,et al.Functions and mechanisms of lysine crotonylation[J].Journal of Cellular and Molecular Medicine,2019,23(11):7163-7169.
[40] YUAN H,WU X,WU Q,et al.Lysine catabolism reprograms tumour immunity through histone crotonylation[J].Nature,2023,617(7962):818-826.
[41]WAN J,LIU H,MING L.Lysine crotonylation is involved in hepatocellular carcinoma progression[J].Biomed Pharmacother,2019,111:976-982.
[42] FELLOWS R,DENIZOT J,STELLATO C,et al.Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases[J].Nat Commun,2018,9(1):105.
[43] JONES PA.Functions of DNA methylation:islands,start sites,gene bodies and beyond[J].Nature Reviews Genetics,2012,13(7):484-492.
[44] JONES PA,ISSA JP,BAYLIN S.Targeting the cancer epigenome for therapy[J].Nature Reviews Genetics,2016,17(10):630-641.
[45] HENRICH KO,BENDER S,SAADATI M,et al.Integrative genome-scale analysis identifies epigenetic mechanisms of transcriptional deregulation in unfavorable neuroblastomas[J].Cancer Research,2016,76(18):5523-5537.
[46] FENG J,ZHANG Y,SHE X,et al.Hypermethylated gene ANKDD1A is a candidate tumor suppressor that interacts with FIH1 and decreases HIF1α stability to inhibit cell autophagy in the glioblastoma multiforme hypoxia microenvironment[J].Oncogene,2019,38(1):103-119.
[47] GUO X,YANG N,JI W,et al.Mito-bomb:Targeting mitochondria for cancer therapy[J].Adv Mater,2021,33(43):e2007778.
[48] DE A,KUPPUSAMYG.Metformin in breast cancer:preclinical and clinical evidence[J].Current Problems in Cancer,2020,44(1):100488.
[49] KAMARUDIN MNA,SARKER MMR,ZHOU JR,et al.Metformin in colorectal cancer:molecular mechanism,preclinical and clinical aspects[J].Journal of Experimental & Clinical Cancer Research,2019,38(1):491.
[50]VASAN K,WERNER M,CHANDEL NS.Mitochondrial metabolism as a target for cancer therapy[J].Cell Metab,2020,32(3):341-352.
[51]TERAO M,GORACCI L,CELESTINI V,et al.Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid[J].J Exp Clin Cancer Res,2019,38(1):436.
[52] MCCALL CE,ZABALAWI M,LIU T,et al.Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival [J].JCI Insight,2018,3(15):e99292.
[53] CHAO Y,LIU Z.Biomaterials tools to modulate the tumour microenvironment in immunotherapy[J].Nat Rev Bioeng,2023,1:125-138.
[54]HOLT RD.Bringing the Hutchinsonian niche into the 21st century:ecological and evolutionary perspectives[J].Proc Natl Acad Sci USA,2009,106(Suppl 2):19659-19665.
[55]LI Z,SUN C,QIN Z.Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming[J].Theranostics,2021,11(17):8322-8336.
[56] BANTUG GR,HESS C.The immunometabolic ecosystem in cancer[J].Nat Immunol,2023,24(12):2008-2020.
[57] HUO M,ZHANG J,HUANG W,et al.Interplay among metabolism,epigenetic modifications,and gene expression in cancer[J].Frontiers in Cell and Developmental Biology,2021,9:793428.
[58]SAINERO-ALCOLADO L,LIANO-PONS J,RUIZ-PEREZ MV,et al.Targeting mitochondrial metabolism for precision medicine in cancer[J].Cell Death Differ,2022,29(7):1304-1317.
[59] PENG H,YAO F,ZHAO J,et al.Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials[J].Exploration(Beijing),2023,3(2):20220115.

Memo

Memo:
National Natural Science Foundation of China(No.82173460,82373518);国家自然科学基金(编号:82173460,82373518)
Last Update: 1900-01-01