[1]CHEN WQ,ZHENG RS,BAADE PD,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132.
[2]国家卫生健康委员会医政司,中华医学会肿瘤学分会.国家卫健委中国结直肠癌诊疗规范(2023版)[J].中国实用外科杂志,2023,43(06):602-630.
Department of Medical Administration,National Health Commission,Society of Oncology,Chinese Medical Association.China colorectal cancer diagnosis and treatment standards of National Health Commission (2023 edition)[J].Chinese Journal of Practical Surgery,2023,43(06):602-630.
[3] GLYNNE-JONES R,WYRWICZ L,TIRET E.Rectal cancer:ESMO clinical practice guidelines for diagnosis,treatment and follow-up[J].Ann Oncol,2017,28(suppl_4):iv22-iv40.
[4]BALYASNIKOVA S,BROWN G.Optimal imaging strategies for rectal cancer staging and ongoing management[J].Curr Treat Options Oncol,2016,17(6):32.
[5] KALISZ KR,ENZERRA MD,PASPULATI RM.MRI evaluation of the response of rectal cancer to neoadjuvant chemoradiation therapy[J].Radiographics,2019,39(2):538-556.
[6]MA X,SHEN F,JIA Y.MRI-based radiomics of rectal cancer:preoperative assessment of the pathological features[J].BMC Med Imaging,2019,19(1):86.
[7]LIU L,LIU Y,XU L.Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer[J].J Magn Reson Imaging,2017,45(6):1798-1808.
[8]王斌杰,周彦汝,姜澳田.MRI纹理特征定量分析用于T2,3期直肠癌精准分期的初步研究[J].中国肿瘤, 2020,29(07):554-560.
WANG BJ,ZHOU YR,JIANG AT.Preliminary study on precise staging of rectal cancer stage T2,3 based on quantitative analysis of MRI texture features[J].China Cancer,2020,29(07):554-560.
[9]SUN Y,HU P,WANG J.Radiomic features of pretreatment MRI could identify T stage in patients with rectal cancer:Preliminary findings[J].J Magn Reson Imaging,2018,48(3):615-621.
[10]LIN X,ZHAO S,JIANG H.A radiomics-based nomogram for preoperative T staging prediction of rectal cancer[J].Abdom Radiol (NY),2021,46(10):4525-4535.
[11]韩哲,邵国良,庞佩佩.纹理分析及影像组学在直肠癌新辅助放化疗评估中的研究进展[J].医学影像学杂志, 2019,29(09):1582-1586.
HAN Z,SHAO GL,PANG PP.Research progress on texture analysis and radiomics in the evaluation of neoadjuvant chemoradiotherapy for rectal cancer[J].Med Imaging,2019,29(09):1582-1586.
[12]BEETS-TAN RG,BEETS GL.MRI for assessing and predicting response to neoadjuvant treatment in rectal cancer[J].Nat Rev Gastroenterol Hepatol,2014,11(8):480-488.
[13]MENG X,XIA W,XIE P.Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer[J].Eur Radiol,2019,29(6):3200-3209.
[14]LANGMAN G,PATEL A,BOWLEY DM.Size and distribution of lymph nodes in rectal cancer resection specimens[J].Dis Colon Rectum,2015,58(4):406-414.
[15]HUANG YQ,LIANG CH,HE L.Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal Cancer[J].J Clin Oncol,2016,34:2157-2164.
[16]LI J,WANG P,ZHOU Y.Different machine learning and deep learning methods for the classification of colorectal cancer lymph node metastasis images[J].Front Bioeng Biotechnol,2021,8:620257.
[17]WANG Y,ZHAO H,FU P.Preoperative prediction of lymph node metastasis in colorectal cancer using 18F-FDG PET/CT peritumoral radiomics analysis[J].Med Phys,2024,51(8):5214-5225.
[18]BULENS P,COUWENBERG A,HAUSTERMANS K.Development and validation of an MRI-based model to predict response to chemoradiotherapy for rectal cancer[J].Radiother Oncol,2018,126(3):437-442.
[19]GOLLUB MJ,BLAZIC I,FELDER S.Value of adding dynamic contrast-enhanced MRI visual assessment to conventional MRI and clinical assessment in the diagnosis of complete tumour response to chemoradiotherapy for rectal cancer[J].Eur Radiol,2019,29(3):1104-1113.
[20]ZHOU X,YI Y,LIU Z.Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer[J].Ann Surg Oncol,2019,26(6):1676-1684.
[21] LEE JH,JANG HS,KIM JG.Prediction of pathologic staging with magnetic resonance imaging after preoperative chemoradiotherapy in rectal cancer:Pooled analysis of KROG 10-01 and 11-02[J].Radiother Oncol,2014,113(1):18-23.
[22]VAN DEN BROEK JJ,VAN DER WOLF FS,LAHAYE MJ.Accuracy of MRI in restaging locally advanced rectal cancer after preoperative chemoradiation[J].Dis Colon Rectum,2017,60(3):274-283.
[23]BULENS P,COUWENBERG A,INTVEN M.Predicting the tumor response to chemoradiotherapy for rectal cancer:Model development and external validation using MRI radiomics[J].Radiother Oncol,2020,142:246-252.
[24]孟闫凯,张翀达,张红梅.MRI纹理分析对局部进展期直肠癌新辅助放化疗疗效的预测价值[J].中华放射学杂志,2017,51(12):944-948.
MENG YK,ZHANG CD,ZHANG HM.MRI texture analysis in prediction of treatment response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J].Chin J Radiol,2017,51(12):944-948.
[25]ALVAREZ-JIMENEZ C,ANTUNES JT,TALASILA N.Radiomic texture and shape descriptors of the rectal environment on post-chemoradiation T2-weighted MRI are associated with pathologic tumor stage regression in rectal cancers:a retrospective,multi-institution study[J].Cancers (Basel),2020,12(8):2027.
[26]HORVAT N,VEERARAGHAVAN H,KHAN M.MR Imaging of rectal cancer:radiomics analysis to assess treatment response after neoadjuvant therapy[J].Radiology,2018,287(3):833-843.
[27]ARNOLD M,SIERRA MS,LAVERSANNE M.Global patterns and trends in colorectal cancer incidence and mortality[J].Gut,2017,66(4):683-691.
[28]CUI Y,YANG W,REN J.Prognostic value of multiparametric MRI-based radiomics model:Potential role for chemotherapeutic benefits in locally advanced rectal cancer[J].Radiother Oncol,2021,154:161-169.
[29]JALIL O,AFAQ A,GANESHAN B.Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy[J].Colorectal Dis,2017,19(4):349-362.
[30]LIU Z,MENG X,ZHANG H.Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer[J].Nat Commun,2020,11(1):4308.
[31]JIANG X,ZHAO H,SALDANHA OL.An MRI deep learning model predicts outcome in rectal cancer[J].Radiology,2023,307(5):e222223.
[32]HORVAT N,BATES DDB,PETKOVSKA I.Novel imaging techniques of rectal cancer:what do radiomics and radiogenomics have to offer? A literature review[J].Abdom Radiol (NY),2019,44(11):3764-3774.
[33]LAMBIN P,RIOS-VELAZQUEZ E,LEIJENAAR R.Radiomics:extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.
[34]XU Y,XU Q,MA Y.Characterizing MRI features of rectal cancers with different KRAS status[J].BMC Cancer,2019,19(1):1111.
[35]GUO TA,WU YC,TAN C.Clinicopathologic features and prognostic value of KRAS,NRAS and BRAF mutations and DNA mismatch repair status:A single-center retrospective study of 1,834 Chinese patients with stage I-IV colorectal cancer[J].Int J Cancer,2019,145(6):1625-1634.
[36]OH JE,KIM MJ,LEE J.Magnetic resonance-based texture analysis differentiating KRAS mutation status in rectal cancer[J].Cancer Res Treat,2020,52(1):51-59.
[37]CUI Y,LIU H,REN J.Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer[J].Eur Radiol,2020,30(4):1948-1958.
[38]MENG X,XIA W,XIE P.Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer[J].Eur Radiol,2019,29(6):3200-3209.
[39]CUI Y,CUI X,YANG X.Diffusion kurtosis imaging-derived histogram metrics for prediction of KRAS mutation in rectal adenocarcinoma:Preliminary findings[J].J Magn Reson Imaging,2019,50(3):930-939.
[40]YEO DM,OH SN,CHOI MH.Histogram analysis of perfusion parameters from dynamic contrast-enhanced MR imaging with tumor characteristics and therapeutic response in locally advanced rectal cancer[J].BioMed Res Int,2018,2018(1):3724393.
[41]JEON SH,SONG C,CHIE EK.Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer[J].Radiat Oncol,2019,14(1):43.
[42]ZHANG G,CHEN L,LIU A.Comparable performance of deep learning-based to manual-based tumor segmentation in KRAS/NRAS/BRAF mutation prediction with mr-based radiomics in rectal cancer[J].Front Oncol,2021,11:696706.
[43]ZHAO H,SU Y,WANG Y.Using tumor habitat-derived radiomic analysis during pretreatment 18F-FDG PET for predicting KRAS/NRAS/BRAF mutations in colorectal cancer[J].Cancer Imaging,2024,24(1):26.
[44]BEETS-TAN RG,BEETS GL.MRI for assessing and predicting response to neoadjuvant treatment in rectal cancer[J].Nat Rev Gastroenterol Hepatol,2014,11(8):480-488.