[1]GILLIES RJ,KINAHAN PE,HRICAK H.Radiomics:Images are more than pictures,they are data[J].Radiology,2016,278(2):563-577.
[2]AERTS HJ,VELAZQUEZ ER,LEIJENAAR RT,et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J].Nat Commun,2014,5:4006.
[3]RIZZO S,BOTTA F,RAIMONDI S,et al.Radiomics:the facts and the challenges of image analysis[J].Eur Radiol Exp,2018,2(1):36.
[4]GU H,ZHANG X,DI RUSSO P,et al.The current state of radiomics for meningiomas:promises and challenges[J].Front Oncol,2020,10:567736.
[5]LAMBIN P,LEIJENAAR R,DEIST TM,et al.Radiomics:the bridge between medical imaging and personalized medicine[J].Nat Rev Clin Oncol,2017,14(12):749-762.
[6]穆建华,张雁伟,吴志钢.基于常规MRI图像的不同影像组学模型在脑胶质瘤术前分级中的应用[J].磁共振成像,2020,11(01):5.
MU Jianhua,ZHANG Yanwei,WU Zhigang.Application of different radiomics models based on conventional MRI images in the preoperative classification of glioma[J].Chin J Magn Reson imaging,2020,11(01):5.
[7]XU C,PENG Y,ZHU W,et al.An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics[J].Front Oncol,2022,12:969907.
[8]ZHAO Z,NIE C,ZHAO L,et al.Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas[J].Eur Radiol,2024,34(4):2468-2479.
[9]DUAN C,LI N,LIU X,et al.Performance comparison of 2D and 3D MRI radiomics features in meningioma grade prediction:A preliminary study[J].Front Oncol,2023,13:1157379.
[10]LOUIS DN,PERRY A,REIFENBERGER G,et al.The 2016 World Health Organization classification of tumors of the central nervous system:a summary[J].Acta Neuropathol,2016,131(6):803-820.
[11]CHOI YS,BAE S,CHANG JH,et al.Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J].Neuro Oncol,2021,23(2):304-313.
[12]SHA Y,YAN Q,TAN Y,et al.Prediction of the molecular subtype of IDH mutation combined with MGMT promoter methylation in gliomas via radiomics based on preoperative MRI[J].Cancers (Basel),2023,15(5):1440.
[13]KASAP D,MORA N,BLOMER DA,et al.Comparison of MRI sequences to predict IDH mutation status in gliomas using radiomics-based machine learning[J].Biomedicines,2024,12(4):725.
[14]HUANG WY,WEN LH,WU G,et al.Comparison of radiomics analyses based on different magnetic resonance imaging sequences in grading and molecular genomic typing of glioma[J].J Comput Assist Tomogr,2021,45(1):110-120.
[15]SUDRE CH,PANOVSKA-GRIFFITHS J,SANVERDI E,et al.Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status[J].BMC Med Inform Decis Mak,2020,20(1):149.
[16]WU M,JIANG T,GUO M,et al.Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas[J].Eur Radiol,2024,34(5):2986-2996.
[17]PARK YW,OH J,YOU SC,et al.Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging[J].Eur Radiol,2019,29(8):4068-4076.
[18]NIU L,ZHOU X,DUAN C,et al.Differentiation researches on the meningioma subtypes by radiomics from contrast-enhanced magnetic resonance imaging:a preliminary study[J].World Neurosurg,2019,126:e646-e652.
[19]ZHANG J,ZHANG G,CAO Y,et al.A magnetic resonance imaging-based radiomic model for the noninvasive preoperative differentiation between transitional and atypical meningiomas[J].Front Oncol,2022,12:811767.
[20]JING H,YANG F,PENG K,et al.Multimodal MRI-based radiomic nomogram for the early differentiation of recurrence and pseudoprogression of high-grade glioma[J].Biomed Res Int,2022,2022:4667117.
[21]FU FX,CAI QL,LI G,et al.The efficacy of using a multiparametric magnetic resonance imaging-based radiomics model to distinguish glioma recurrence from pseudoprogression[J].Magn Reson Imaging,2024,111:168-178.
[22]LUAN J,ZHANG D,LIU B,et al.Immune-related lncRNAs signature and radiomics signature predict the prognosis and immune microenvironment of glioblastoma multiforme[J].J Transl Med,2024,22(1):107.
[23]YANG HC,WU CC,LEE CC,et al.Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after gamma knife radiosurgery based on preradiosurgical MR radiomics[J].Radiother Oncol,2021,155:123-130.
[24]LANGENHUIZEN P,ZINGER S,LEENSTRA S,et al.Radiomics-based prediction of long-term treatment response of vestibular schwannomas following stereotactic radiosurgery[J].Otol Neurotol,2020,41(10):e1321-e1327.
[25]袁媛,李振凯,杜红娣,等.MRI瘤周影像组学鉴别高级别胶质瘤与脑内单发转移瘤的应用价值[J].现代肿瘤医学,2023,31(6):1103-1107.
YUAN Yuan,LI Zhenkai,DU Hongdi,et al.Application value of MRI peritumoral radiomics in differentiating high-grade glioma from single metastases in the brain[J].Modern Oncology,2023,31(6):1103-1107.
[26]刘娟,朱吉高,王立兴,等.增强磁共振成像纹理参数对胶质母细胞瘤、原发性中枢神经系统淋巴瘤和单发转移瘤的鉴别诊断价值[J].中华消化病与影像杂志(电子版),2021,11(02):61-66.
LIU Juan,ZHU Jigao,WANG Lixing,et al.Value of enhanced magnetic resonance imaging texture parameters in the differential diagnosis of glioblastoma,primary central nervous system lymphoma and single metastases[J].Chinese Journal of Digestive Diseases and Imaging (Electronic Edition),2021,11(02):61-66.
[27]WANAMAKER MW,VERNAU KM,TAYLOR SL,et al.Classification of neoplastic and inflammatory brain disease using MRI texture analysis in 119 dogs[J].Vet Radiol Ultrasound,2021,62(4):445-454.
[28]LI X,LU Y,XIONG J,et al.Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis[J].J Neuroradiol,2019,46(5):281-287.
[29]DONG J,LI L,LIANG S,et al.Differentiation between ependymoma and medulloblastoma in children with radiomics approach[J].Acad Radiol,2021,28(3):318-327.
[30]GEORGE-JONES NA,CHKHEIDZE R,MOORE S,et al.MRI texture features are associated with vestibular schwannoma histology[J].Laryngoscope,2021,131(6):E2000-E2006.
[31]LI J,LIU S,QIN Y,et al.High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features:A more precise and personalized gliomas management[J].PLoS One,2020,15(1):e0227703.
[32]WANG Y,WEI W,LIU Z,et al.Predicting the type of tumor-related epilepsy in patients with low-grade gliomas:a radiomics study[J].Front Oncol,2020,10:235.
[33]FAN X,LI J,HUANG B,et al.Noninvasive radiomics model reveals macrophage infiltration in glioma[J].Cancer Lett,2023,573:216380.
[34]YIP SS,AERTS HJ.Applications and limitations of radiomics[J].Phys Med Biol,2016,61(13):R150-R166.
[35]ZWANENBURG A,VALLIERES M,ABDALAH M,et al.The image biomarker standardization initiative:standardized quantitative radiomics for high-throughput image-based phenotyping[J].Radiology,2020,295(2):328-338.
[36]PINTO DSD,DIETZEL M,BAESSLER B.A decade of radiomics research:are images really data or just patterns in the noise[J].Eur Radiol,2021,31(1):1-4.
[37]PARK JE,KIM D,KIM HS,et al.Quality of science and reporting of radiomics in oncologic studies:room for improvement according to radiomics quality score and TRIPOD statement[J].Eur Radiol,2020,30(1):523-536.