|Table of Contents|

Research progress of ultrasound imaging technology in predicting molecular subtypes of breast cancer

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2024 18
Page:
3611-3617
Research Field:
Publishing date:

Info

Title:
Research progress of ultrasound imaging technology in predicting molecular subtypes of breast cancer
Author(s):
WANG Yaochen12FANG Xiuxia1FAN Binghui1LIU Qun1
1.Department of Ultrasound Diagnostic,the Affiliated Hospital of Inner Mongolia Medical University,Inner Mongolia Hohhot 010010,China;2.Inner Mongolia Medical University,Inner Mongolia Hohhot 010010,China.
Keywords:
molecular subtypes of breast cancerconventional ultrasoundshear wear elastographyCEUS3D-USradiomicsAI
PACS:
R737.9
DOI:
10.3969/j.issn.1672-4992.2024.18.033
Abstract:
Breast cancer is one of the malignant tumors that afflicts women worldwide.Early diagnosis and precise treatment are the common goals of scholars.Breast cancer is a tumor with strong heterogeneity,and the biological behavior,imaging,pathological features and prognosis of different molecular subtypes are significantly different.Therefore,it is of great guiding significance to define molecular subtypes before operation for clinical treatment options.At present,the molecular subtypes of breast cancer mainly rely on puncture biopsy.However,the acceptance of invasive examination is low,and the local tissue cannot reflect the overall lesion.In recent years,how to noninvasively predict molecular subtypes by imaging technology has attracted the attention of scholars at home and abroad.As the most widely used auxiliary examination technique for preoperative evaluation of breast cancer,ultrasound is simple,noninvasive,real-time and repeatable.Ultrasound technologies such as conventional ultrasound,elastography,contrast-enhanced ultrasound (CEUS),three-dimensional ultrasound (3D-US),radiomics,and artificial intelligence (AI) breast ultrasound have shown great potential in predicting molecular subtypes of breast cancer.This article reviews the progress,the feasibility and limitations of ultrasound imaging technology in predicting molecular subtypes of breast cancer.

References:

[1] BRAY F,LAVERSANNE M,SUNG H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263.
[2] XIA C,DONG X,LI H,et al.Cancer statistics in China and United States,2022:profiles,trends,and determinants[J].Chinese Medical Journal,2022,135(5):584-590.
[3]贺新,彭书甲,师弘.乳腺癌患者原发灶与复发转移灶中ER、PR、HER-2及Ki-67表达异质性的回顾性分析[J].现代肿瘤医学,2023,31(9):1660-1665. HE X,PENG SJ,SHI H.Retrospective analysis of the discordance in ER,PR,HER-2 and Ki-67 expression between recurrent metastasis and primary sites in breast cancer patients[J].Modern Oncology,2023,31(9):1660-1665.
[4]RASHMI S,KAMALA S,MURTHY SS,et al.Predicting the molecular subtype of breast cancer based on mammography and ultrasound findings[J].Indian Journal of Radiology and Imaging,2018,28(03):354-361.
[5] 何美情,王娟,刘波,等.乳腺癌组织中HER-2的表达与肿瘤超声声像图特征的相关性[J].现代肿瘤医学,2021,29(20):3565-3568. HE MQ,WANG J,LIU B,et al.Correlation between HER-2 expression and ultrasonic features in breast cancer[J].Modern Oncology,2021,29(20):3565-3568.
[6] 陈洋,张艳,于瑞娜.乳腺浸润性导管癌的超声特征及其与分子分型的相关性[J].现代肿瘤医学,2020,28(10):1739-1743. CHEN Y,ZHANG Y,YU RN.Relationship between ultrasonic features and molecular typing in invasive ductal carcinoma of breast[J].Modern Oncology,2020,28(10):1739-1743.
[7] XU J,LI F,CHANG FL.Correlation of the ultrasound imaging of breast cancer and the expression of molecular biological indexes[J].Pakistan Journal of Pharmaceutical Sciences,2017,30(suppl_4):1425-1430.
[8] YOUK JH,GWEON HM,SON EJ.Shear-wave elastography in breast ultrasonography:the state of the art[J].Ultrasonography,2017,36(4):300-309.
[9] KIM H,LEE J,KANG BJ,et al.What shear wave elastography parameter best differentiates breast cancer and predicts its histologic aggressiveness[J].Ultrasonography,2021,40(2):265-273.
[10]王燕,方开峰,俞秋雨,等.乳腺癌超声 SWE 技术分析及其与 ER、PR、Ki-67 表达和分子分型的相关[J].中国医药导报,2020,17(26):21-25. WANG Y,FANG KF,YU QY,et al.Breast cancer ultrasound SWE technical analysis and its correlation with ER,PR,Ki-67 expression and molecular typing[J].China Medical Herald,2020,17(26):21-25.
[11]梁铭,欧冰,吴嘉仪,等.剪切波弹性成像和应变弹性成像对乳腺癌诊断价值的研究[J].中国超声医学杂志,2019,35(4):310-312. LIANG M,OU B,WU JY,et al.The value of shear-wave elastography and strain elastography in the diagnosis of breast cancer[J].Chinese J Ultrasound Med,2019,35(4):310-312.
[12]刘瑾瑾,王鸿凤,崔浩,等.常规超声及剪切波弹性成像在三阴性乳腺癌诊断中的应用价值[J].中华超声影像学杂志,2018,27(11):968-972. LIU JJ,WANG HF,CUI H,et al.Applied value of routine ultrasound and shear wave elastography in the diagnosis of triple negative breast cancer[J].Chin J Ultrasonogr,2018,27(11):968-972.
[13] 吴芳,成静,马婷,等.不同分子分型乳腺癌的超声造影特征分析[J].临床超声医学杂志,2019,21(1):1-4. WU F,CHENG J,MA T,et al.Analysis on the contrast-enhanced ultrasound features of breast cancer for different molecular types[J].J Chin Ultrasound Med,2019,21(1):1-4.
[14] 刘韬,陈庭威,严宝妹,等.自动乳腺全容积扫描冠状面所见联合肿瘤标记物评估乳腺癌腋窝淋巴结转移[J].中国医学影像技术,2022,38(8):1177-1180. LIU T,CHEN TW,YANG BM,et al.Automatic breast volume scanner(ABVS)coronal signs combined with tumor indicators for evaluation on axillary lymphnode metastasis of breast cancer[J].Chin J Med Imaging,2022,38(8):1177-1180.
[15] 梁星宇,王鸿凤,李紫瑶,等.超声造影对不同分子分型乳腺癌鉴别诊断的初步研究[J].中华超声影像学杂志,2018,27(10):881-886. LIANG XY,WANG HF,LI ZY,et al.The preliminary research of contrast-enhanced ultrasound in differential diagnosis of different molecular subtypes of breast cancer[J].Chin J Ultrasonogr,2018,27(10):881-886.
[16] 朱阳阳,聂芳,吕文豪,等.乳腺癌常规超声及超声造影特征与HER-2表达的相关性研究[J].中国超声医学杂志,2020,36(7):606-609. ZHU YY,NIE F,LYU WH,et al.Correlation between conventional and contrast-enhanced ultrasonography and HER-2 expression in breast cancer[J].Chinese J Ultrasound Med,2020,36(7):606-609.
[17] 朱桂新,武爽,董立阳,等.不同分子分型乳腺癌超声造影灌注特征的分析研究[J].中国医学装备,2021,18(2):47-50. ZHU GX,WU S,DONG LY,et al.Analytical research of CEUS perfusion characteristics of breast cancers with different molecular typing[J].China Medical Equipment,2021,18(2):47-50.
[18] LIANG X,LI Z,ZHANG L,et al.Application of contrast-enhanced ultrasound in the differential diagnosis of different molecular subtypes of breast cancer[J].Ultrasonic Imaging,2020,42(6):261-270.
[19] WEN B,KONG W,ZHANG Y,et al.Association between contrast-enhanced ultrasound characteristics and molecular subtypes of breast cancer[J].Journal of Ultrasound in Medicine,2022,41(8):2019-2031.
[20] JI CL,LI XL,HE YP,et al.Quantitative parameters of contrast-enhanced ultrasound in breast invasive ductal carcinoma:The correlation with pathological prognostic factors[J].Clinical Hemorheology and Microcirculation,2017,66(4):333-345.
[21] VRAKA I,PANOURGIAS E,SIFAKIS E,et al.Correlation between contrast-enhanced ultrasound characteristics (qualitative and quantitative) and pathological prognostic factors in breast cancer[J].In Vivo,2018,32(4):945-954.
[22] 冯源,兰晓莉,张永学.分子影像学用于早期诊断乳腺癌及其分子分型进展[J].中国医学影像技术,2022,38(7):1086-1089. FENG Y,LAN XL,ZHANG YX.Progress in molecular imaging for early diagnosis and molecular typing of breast cancer[J].Chin J Med Imaging Technol,2022,38(7):1086-1089.
[23] XU X,LU L,ZHU L,et al.Predicting the molecular subtypes of breast cancer using nomograms based on three-dimensional ultrasonography characteristics[J].Frontiers in Oncology,2022,12:838787.
[24] 祁冰,李紫瑶,田家玮.三维超声在不同分子分型乳腺癌诊断中的应用研究[J].中华超声影像学杂志,2020(3):249-254. QI B,LI ZY,TIAN JW.Application of three-dimensional ultrasound in the diagnosis of different molecular subtypes of breast cancer[J].Chin J Ultrasonogr,2020(3):249-254.
[25] KANG HJ,KIM JY,LEE NK,et al.Three-dimensional versus two-dimensional shear-wave elastography:Associations of mean elasticity values with prognostic factors and tumor subtypes of breast cancer[J].Clinical Imaging,2018,48:79-85.
[26] 赵以惠,陈艾琪,杜小萌,等.3D-MRI影像组学特征与肿块型乳腺癌分子分型相关性分析[J].临床放射学杂志,2023,42(9):1442-1446. ZHAO YH,CHEN AQ,DU XM,et al.Correlation analysis of 3D-MRI imaging features and molecular typing of mass breast cancer[J].Journal of Clinical Radiology,2023,42(9):1442-1446.
[27] 张雷,杨丽凤,焦雄.基于特征融合的集成模型分类乳腺癌分子亚型的研究[J].磁共振成像,2023,14(3):58-64. ZHANG L,YANG LF,JIAO X.An integrated model based on feature fusion for classifying molecular subtypes of breast cancer[J].Chin J Magn Reson Imaging,2023,14(3):58-64.
[28] 张莹,王正通,蓝天成,等.CT影像组学在肺结节诊断中的研究进展[J].现代肿瘤医学,2021,29(19):3503-3506. ZHANG Y,WANG ZT,LAN TC,et al.Advances of radiomics research based on computed tomography in pulmonary nodules diagnosis[J].Modern Oncology,2021,29(19):3503-3506.
[29] 周宏岩,于韬.影像组学在乳腺癌诊疗中的应用进展[J].现代肿瘤医学,2020,28(03):489-492. ZHOU HY,YU T.Progress in the application of radiomics in the diagnosis and treatment of breast cancer[J].Modern Oncology,2020,28(03):489-492.
[30] PESAPANE F,DE MARCO P,RAPINO A,et al.How radiomics can improve breast cancer diagnosis and treatment[J].Journal of Clinical Medicine,2023,12(4):1372.
[31] JIANG L,YOU C,XIAO Y,et al.Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer[J].Cell Reports Medicine,2022,3(7):100694.
[32] MOON WK,HUANG YS,LO CM,et al.Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features:Distinguishing between triple-negative breast cancer and fibroadenomas[J].Medical Physics,2015,42(6Part1):3024-3035.
[33] LEE SE,HAN K,KWAK JY,et al.Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma[J].Scientific Reports,2018,8(1):13546.
[34] GAO F,WANG W,TAN M,et al.DeepCC:a novel deep learning-based framework for cancer molecular subtype classification[J].Oncogenesis,2019,8(9):44.
[35] AKKUS Z,CAI J,BOONROD A,et al.A survey of deep-learning applications in ultrasound:Artificial intelligence-powered ultrasound for improving clinical workflow[J].Journal of the American College of Radiology,2019,16(9):1318-1328.
[36] ZHOU BY,WANG LF,YIN HH,et al.Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model:A prospective and multicenter study[J].EBioMedicine,2021,74:103684.

Memo

Memo:
内蒙古自然科学基金项目(编号:2019LH08020,2021LHMS08049);内蒙古医科大学科技百万工程联合项目[编号:YKD2018KJBW(LH)033]
Last Update: 1900-01-01