[1] GUERRA L,BONETTI L,BRENNER D.Metabolic modulation of immunity:a new concept in cancer immunotherapy[J].Cell Reports,2020,32(1):107848.
[2] LIN B,DU L,LI H,et al.Tumor-infiltrating lymphocytes:warriors fight against tumors powerfully[J].Biomedicine & Pharmacotherapy,2020,132:110873.
[3] 陈文雅,容少玲,钟振国.肿瘤浸润性淋巴细胞在肿瘤免疫中的作用研究进展[J].广西中医药,2020,43(05):66-68.
CHEN WY,RONG SL,ZHONG ZG.Research progress on the role of tumor infiltrating lymphocytes in tumor immunity[J].Guangxi Journal of Traditional Chinese Medicine,2020,43(05):66-68.
[4] RASKOV H,ORHAN A,CHRISTENSEN JP,et al.Cytotoxic CD8+T cells in cancer and cancer immunotherapy[J].British Journal of Cancer,2021,124(2):359-367.
[5] MAIMELA NR,LIU S,ZHANG Y.Fates of CD8+T cells in tumor microenvironment[J].Computational and Structural Biotechnology Journal,2019,17:1-13.
[6] 朱潇雨,李杰.基于阴阳理论探讨中医药促进“冷”肿瘤向“热”转化[J].中华中医药杂志,2022,37(08):4356-4359.
ZHU XY,LI J.Study on the promotion of "cold" tumor to "hot" based on Yin and Yang theory[J].Chinese Journal of Traditional Chinese Medicine,2022,37(08):4356-4359.
[7] CLARA JA,MONGE C,YANG Y,et al.Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update[J].Nature Reviews Clinicaloncology,2020,17(4):204-232.
[8] LIU YT,SUN ZJ.Turning cold tumors into hot tumors by improving T-cell infiltration[J].Theranostics,2021,11(11):5365.
[9] APPLETON E,HASSAN J,CHAN WAH HAK C,et al.Kickstarting immunity in cold tumours:localised tumour therapy combinations with immune checkpoint blockade[J].Frontiers in Immunology,2021,12:754436.
[10] VERDON DJ,MULAZZANI M,JENKINS MR.Cellular and molecular mechanisms of CD8+T cell differentiation,dysfunction and exhaustion[J].International Journal of Molecular Sciences,2020,21(19):7357.
[11] GALLUZZI L,CHAN TA,KROEMER G,et al.The hallmarks of successful anticancer immunotherapy[J].Science Translational Medicine,2018,10(459):eaat7807.
[12] SAW PE,CHEN J,SONG E.Targeting CAFs to overcome anticancer therapeutic resistance[J].Trends in Cancer,2022,8(7):527-555.
[13] 苏璇,朱晓斌,张俊萍.CXC趋化因子受体3变体及其配体在肿瘤微环境中作用的研究进展[J].中国肿瘤生物治疗杂志,2021,28(07):728-731.
SU X,ZHU XB,ZHANG JP.Research progress of CXC chemokine receptor 3 variant and its ligand in tumor microenvironment[J].Chinese Journal of Cancer Biotherapy,2021,28(07):728-731.
[14] VONDERHAAR EP,BARNEKOW NS,MCALLISTER D,et al.STING activated tumor-intrinsic type Ⅰ interferon signaling promotes CXCR3 dependent antitumor immunity in pancreatic cancer[J].Cellular and Molecular Gastroenterology and Hepatology,2021,12(1):41-58.
[15] VOLLMER T,SCHLICKEISER S,AMINI L,et al.The intratumoral CXCR3 chemokine system is predictive of chemotherapy response in human bladder cancer[J].Science Translational Medicine,2021,13(576):eabb3735.
[16] ROMERO JM,GRUNWALD B,JANG GH,et al.A four-chemokine signature is associated with a T-cell-inflamed phenotype in primary and metastatic pancreatic cancer[J].Clinical Cancer Research,2020,26(8):1997-2010.
[17] CHEN BJ,ZHAO JW,ZHANG DH,et al.Immunotherapy of cancer by targeting regulatory T cells[J].International Immunopharmacology,2022,104:108469.
[18] TAN Y,WANG M,ZHANG Y,et al.Tumor-associated macrophages:a potential target for cancer therapy[J].Frontiers in Oncology,2021,11:693517.
[19] ASIF PJ,LONGOBARDI C,HAHNE M,et al.The role of cancer-associated fibroblasts in cancer invasion and metastasis[J].Cancers,2021,13(18):4720.
[20] LI Y,ZHANG Q,WU M,et al.Suppressing MDSC infiltration in tumor microenvironment serves as anoption for treating ovarian cancer metastasis[J].International Journal of Biological Sciences,2022,18(9):3697-3713.
[21] RUSSELL BL,SOOKLAL SA,MALINDISA ST,et al.The tumor microenvironment factors that promote resistance to immune checkpoint blockade therapy[J].Frontiers in Oncology,2021,11:641428.
[22] GUO T,YANG Y,GAO M,et al.Lepidium meyenii walpers polysaccharide and its cationic derivative reeducate tumor-associated macrophages for synergistic tumor immunotherapy[J].Carbohydrate Polymers,2020,250:116904.
[23] HWANG HS,KIM D,CHOI J.Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors[J].Journal for Immunotherapy of Cancer,2021,9(10):e002797.
[24] OHSHIMA K,MORII E.Metabolic reprogramming of cancer cells during tumor progression and metastasis[J].Metabolites,2021,11(1):28.
[25] STIRLING ER,BRONSON SM,MACKERT JD,et al.Metabolic implications of immune checkpoint proteinsin cancer[J].Cells,2022,11(1):179.
[26] JIANG Y,CHEN M,NIE H,et al.PD-1 and PD-L1 in cancer immunotherapy:clinical implications and future considerations[J].Human Vaccines & Immunotherapeutics,2019,15(5):1111-1122.
[27] JIANG W,HE Y,HE W,et al.Exhausted CD8+T cells in the tumor immune microenvironment:new pathways to therapy[J].Frontiers in Immunology,2021,11:622509.
[28] JIANG Y,LI Y,ZHU B.T-cell exhaustion in the tumor microenvironment[J].Cell Death & Disease,2015,6(6):e1792-e1792.
[29] ANDO M,ITO M,SRIRAT T,et al.Memory T cell,exhaustion,and tumor immunity[J].Immunological Medicine,2020,43(1):1-9.
[30] CHEN J,LOPEZ-MOYADO IF,SEO H,et al.NR4A transcription factors limit CART cell function in solid tumours[J].Nature,2019,567(7749):530-534.
[31] SEO H,CHEN J,GONZALEZ-AVALOS E,et al.TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+T cell exhaustion[J].Proceedings of the National Academy of Sciences,2019,116(25):12410-12415.
[32] FRANCO F,JACCARD A,ROMERO P,et al.Metabolic and epigenetic regulation of T-cell exhaustion[J].Nature Metabolism,2020,2(10):1001-1012.
[33] DE PALMA M,BIZIATO D,PETROVA TV.Microenvironmental regulation of tumour angiogenesis[J].Nature Reviews Cancer,2017,17(8):457-474.
[34] WARBURG O.The metabolism of carcinoma cells[J].The Journal of Cancer Research,1925,9(1):148-163.
[35] ELIA I,ROWE JH,JOHNSON S,et al.Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+T cells[J].Cell Metabolism,2022,34(8):1137-1150.e6.
[36] ANDREJEVA G,RATHMELL JC.Similarities and distinctions of cancer and immune metabolism in inflammation and tumors[J].Cell Metabolism,2017,26(1):49-70.
[37] LEONE RD,POWELL JD.Metabolism of immune cells in cancer[J].Nature Reviews Cancer,2020,20(9):516-531.
[38] TEIJEIRA A,GARASA S,ETXEBERRIA I,et al.Metabolic consequences of T-cell costimulation in anticancer immunity[J].Cancer Immunology Research,2019,7(10):1564-1569.
[39] 乔万佳,刘小军.T细胞糖代谢重编程与抗肿瘤免疫治疗的研究进展[J].中国肿瘤生物治疗杂志,2022,29(01):75-79.
QIAO WJ,LIU XJ.Research progress of T cell glucose metabolism reprogramming and antitumor immunotherapy[J].Chin J Tumor Biotherapy,2022,29(01):75-79.
[40] NAGAO A,KOBAYASHI M,KOYASU S,et al.HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance[J].International Journal of Molecular Sciences,2019,20(2):238.
[41] RICCIARDI S,MANFRINI N,ALFIERI R,et al.The translational machinery of human CD4+T cells is poised for activation and controls the switch from quiescence to metabolic remodeling[J].Cell Metabolism,2018,28(6):895-906.e5.
[42] REINFELD BI,RATHMELL WK,KIM TK,et al.The therapeutic implications of immunosuppressive tumor aerobic glycolysis[J].Cellular & Molecular Immunology,2022,19(1):46-58.
[43] GUPTA SS,WANG J,CHEN M.Metabolic reprogramming in CD8+T cells during acute viral infections[J].Frontiers in Immunology,2020,11:1013.
[44] SUZUKI J,NABE S,YASUKAWA M,et al.Glutamine regulates the antitumor activity of CD8 T cells[J].Cancer & Chemotherapy,2020,47(1):11-15.
[45] WANG J,LING R,ZHOU Y,et al.SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway[J].Oncology Letters,2020,20(3):2855-2869.
[46] 王文秋,侯诗源,韩明伟,等.内皮细胞和T细胞的代谢重编程及慢性炎症潜在治疗靶点研究进展[J].细胞与分子免疫学杂志,2021,37(11):1038-1044.
WANG WQ,HOU SY,HAN MW,et al.Metabolic reprogramming of endothelial cells and T cells and potential therapeutic targets for chronic inflammation[J].Cellular and Molecular Immunology Journal,2021,37(11):1038-1044.
[47] XU K,YIN N,PENG M,et al.Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity[J].Science,2021,371(6527):405-410.
[48] ZHAI L,BELL A,LADOMERSKY E,et al.Immunosuppressive IDO in cancer:mechanisms of action,animal models,and targeting strategies[J].Frontiers in Immunology,2020,11:01185.
[49] BAHRAMBEIGI S,SHAFIEI-IRANNEJAD V.Immune-mediated anti-tumor effects of metformin;targeting metabolic reprogramming of T cells as a new possible mechanismfor anti-cancer effects of metformin[J].Biochemical Pharmacology,2020,174:113787.
[50] WANG P,ZHANG Q,TAN L,et al.The regulatory effects of mTOR complexes in the differentiation and function of CD4+T cell subsets[J].Journal of Immunology Research,2020,2020:3406032.
[51] PENA-ASENSIO J,CALVO H,TORRALBA M,et al.Anti-PD-1/PD-L1 based combination immunotherapy to boost antigen-specific CD8+T cell response in hepatocellular carcinoma[J].Cancers,2021,13(8):1922.
[52] QIN Q,LI B.Pembrolizumab for the treatment of nonsmall cell lung cancer:Current status and future directions[J].Journal of Cancer Research and Therapeutics,2019,15(4):743-750.
[53] ZHULAI G,OLEINIK E.Targeting regulatory T cells in anti-PD-1/PD-L1 cancer immunotherapy[J].Scandinavian Journal of Immunology,2022,95(3):e13129.
[54] SMITHY JW,FALECK DM,POSTOW MA.Facts and hopes in prediction,diagnosis,and treatment of immune-related adverse events[J].Clinical Cancer Research,2022,28(7):1250-1257.
[55] KLICHINSKY M,RUELLA M,SHESTOVA O,et al.Human chimeric antigen receptor macrophages for cancer immunotherapy[J].Nature Biotechnology,2020,38(8):947-953.
[56] SCHUSTER SJ,BISHOP MR,TAM CS,et al.Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma[J].New England Journal of Medicine,2019,380(1):45-56.
[57] BLANK CU,HAINING WN,HELD W,et al.Defining "T cell exhaustion"[J].Nature Reviews Immunology,2019,19(11):665-674.
[58] YOST KE,SATPATHY AT,WELLS DK,et al.Clonal replacement of tumor-specific T cells following PD-1 blockade[J].Nature Medicine,2019,25(8):1251-1259.
[59] YATES KB,TONNERRE P,MARTIN GE,et al.Epigenetic scars of CD8+T cell exhaustion persist after cure of chronic infection in humans[J].Nature Immunology,2021,22(8):1020-1029.
[60] 黄启钊,吴霞,王志明,等.肿瘤引流淋巴结抗原特异性记忆CD8+T细胞是PD-1/PD-L1免疫检查点阻断治疗的关键响应者[J].科学通报,2022,67(35):4152-4154.
HUANG QZ,WU X,WANG ZM,et al.Antigen-specific memory CD8+T cells in tumor drainage lymph nodes are key responders to PD-1/PD-L1 immune checkpoint blocking therapy[J].Chinese Science Bulletin,2022,67(35):4152-4154.
[61] HUANG Q,WU X,WANG Z,et al.The primordial differentiation of tumor-specific memory CD8+T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes[J].Cell,2022,185(22):4049-4066.e25.