|Table of Contents|

Research progress of differentiation and metabolic reprogramming related to CD8+T cell depletion in tumor microenvironment

Journal Of Modern Oncology[ISSN:1672-4992/CN:61-1415/R]

Issue:
2024 16
Page:
3130-3137
Research Field:
Publishing date:

Info

Title:
Research progress of differentiation and metabolic reprogramming related to CD8+T cell depletion in tumor microenvironment
Author(s):
LI Na1LI Xiurong2
1.Shandong University of Traditional Chinese Medicine,Shandong Jinan 250014,China;2.The Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Shandong Jinan 250014,China.
Keywords:
tumor microenvironmentCD8+T cellsT cell depletionT cell differentiationmetabolic reprogramming
PACS:
R730.5
DOI:
10.3969/j.issn.1672-4992.2024.16.030
Abstract:
Depletion of CD8+T cells is the core cause of weakened immune response and recurrence and metastasis of malignant tumors.T cells not only need to break through multiple barriers when migrating into the tumor microenvironment,but also the differentiation and metabolism of T cells infiltrated in the tumor microenvironment are still regulated by multiple factors,which often leads to the inhibition of anti-tumor activity of CD8+T cells and further the formation of exhausted T cells,leading to immune escape.Therefore,the study of the related factors and mechanisms leading to T cell depletion is the key to reverse the hypoimmune response in the body,and provides a solid foundation and basis for anti-tumor immunotherapy.In this paper,we reviewed the related processes of infiltration,differentiation,metabolic reprogramming of CD8+T cells and the formation of depleting T cells in the tumor microenvironment,in order to provide potential strategies for improving the anti-tumor efficacy of T cells.

References:

[1] GUERRA L,BONETTI L,BRENNER D.Metabolic modulation of immunity:a new concept in cancer immunotherapy[J].Cell Reports,2020,32(1):107848.
[2] LIN B,DU L,LI H,et al.Tumor-infiltrating lymphocytes:warriors fight against tumors powerfully[J].Biomedicine & Pharmacotherapy,2020,132:110873.
[3] 陈文雅,容少玲,钟振国.肿瘤浸润性淋巴细胞在肿瘤免疫中的作用研究进展[J].广西中医药,2020,43(05):66-68. CHEN WY,RONG SL,ZHONG ZG.Research progress on the role of tumor infiltrating lymphocytes in tumor immunity[J].Guangxi Journal of Traditional Chinese Medicine,2020,43(05):66-68.
[4] RASKOV H,ORHAN A,CHRISTENSEN JP,et al.Cytotoxic CD8+T cells in cancer and cancer immunotherapy[J].British Journal of Cancer,2021,124(2):359-367.
[5] MAIMELA NR,LIU S,ZHANG Y.Fates of CD8+T cells in tumor microenvironment[J].Computational and Structural Biotechnology Journal,2019,17:1-13.
[6] 朱潇雨,李杰.基于阴阳理论探讨中医药促进“冷”肿瘤向“热”转化[J].中华中医药杂志,2022,37(08):4356-4359. ZHU XY,LI J.Study on the promotion of "cold" tumor to "hot" based on Yin and Yang theory[J].Chinese Journal of Traditional Chinese Medicine,2022,37(08):4356-4359.
[7] CLARA JA,MONGE C,YANG Y,et al.Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update[J].Nature Reviews Clinicaloncology,2020,17(4):204-232.
[8] LIU YT,SUN ZJ.Turning cold tumors into hot tumors by improving T-cell infiltration[J].Theranostics,2021,11(11):5365.
[9] APPLETON E,HASSAN J,CHAN WAH HAK C,et al.Kickstarting immunity in cold tumours:localised tumour therapy combinations with immune checkpoint blockade[J].Frontiers in Immunology,2021,12:754436.
[10] VERDON DJ,MULAZZANI M,JENKINS MR.Cellular and molecular mechanisms of CD8+T cell differentiation,dysfunction and exhaustion[J].International Journal of Molecular Sciences,2020,21(19):7357.
[11] GALLUZZI L,CHAN TA,KROEMER G,et al.The hallmarks of successful anticancer immunotherapy[J].Science Translational Medicine,2018,10(459):eaat7807.
[12] SAW PE,CHEN J,SONG E.Targeting CAFs to overcome anticancer therapeutic resistance[J].Trends in Cancer,2022,8(7):527-555.
[13] 苏璇,朱晓斌,张俊萍.CXC趋化因子受体3变体及其配体在肿瘤微环境中作用的研究进展[J].中国肿瘤生物治疗杂志,2021,28(07):728-731. SU X,ZHU XB,ZHANG JP.Research progress of CXC chemokine receptor 3 variant and its ligand in tumor microenvironment[J].Chinese Journal of Cancer Biotherapy,2021,28(07):728-731.
[14] VONDERHAAR EP,BARNEKOW NS,MCALLISTER D,et al.STING activated tumor-intrinsic type Ⅰ interferon signaling promotes CXCR3 dependent antitumor immunity in pancreatic cancer[J].Cellular and Molecular Gastroenterology and Hepatology,2021,12(1):41-58.
[15] VOLLMER T,SCHLICKEISER S,AMINI L,et al.The intratumoral CXCR3 chemokine system is predictive of chemotherapy response in human bladder cancer[J].Science Translational Medicine,2021,13(576):eabb3735.
[16] ROMERO JM,GRUNWALD B,JANG GH,et al.A four-chemokine signature is associated with a T-cell-inflamed phenotype in primary and metastatic pancreatic cancer[J].Clinical Cancer Research,2020,26(8):1997-2010.
[17] CHEN BJ,ZHAO JW,ZHANG DH,et al.Immunotherapy of cancer by targeting regulatory T cells[J].International Immunopharmacology,2022,104:108469.
[18] TAN Y,WANG M,ZHANG Y,et al.Tumor-associated macrophages:a potential target for cancer therapy[J].Frontiers in Oncology,2021,11:693517.
[19] ASIF PJ,LONGOBARDI C,HAHNE M,et al.The role of cancer-associated fibroblasts in cancer invasion and metastasis[J].Cancers,2021,13(18):4720.
[20] LI Y,ZHANG Q,WU M,et al.Suppressing MDSC infiltration in tumor microenvironment serves as anoption for treating ovarian cancer metastasis[J].International Journal of Biological Sciences,2022,18(9):3697-3713.
[21] RUSSELL BL,SOOKLAL SA,MALINDISA ST,et al.The tumor microenvironment factors that promote resistance to immune checkpoint blockade therapy[J].Frontiers in Oncology,2021,11:641428.
[22] GUO T,YANG Y,GAO M,et al.Lepidium meyenii walpers polysaccharide and its cationic derivative reeducate tumor-associated macrophages for synergistic tumor immunotherapy[J].Carbohydrate Polymers,2020,250:116904.
[23] HWANG HS,KIM D,CHOI J.Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors[J].Journal for Immunotherapy of Cancer,2021,9(10):e002797.
[24] OHSHIMA K,MORII E.Metabolic reprogramming of cancer cells during tumor progression and metastasis[J].Metabolites,2021,11(1):28.
[25] STIRLING ER,BRONSON SM,MACKERT JD,et al.Metabolic implications of immune checkpoint proteinsin cancer[J].Cells,2022,11(1):179.
[26] JIANG Y,CHEN M,NIE H,et al.PD-1 and PD-L1 in cancer immunotherapy:clinical implications and future considerations[J].Human Vaccines & Immunotherapeutics,2019,15(5):1111-1122.
[27] JIANG W,HE Y,HE W,et al.Exhausted CD8+T cells in the tumor immune microenvironment:new pathways to therapy[J].Frontiers in Immunology,2021,11:622509.
[28] JIANG Y,LI Y,ZHU B.T-cell exhaustion in the tumor microenvironment[J].Cell Death & Disease,2015,6(6):e1792-e1792.
[29] ANDO M,ITO M,SRIRAT T,et al.Memory T cell,exhaustion,and tumor immunity[J].Immunological Medicine,2020,43(1):1-9.
[30] CHEN J,LOPEZ-MOYADO IF,SEO H,et al.NR4A transcription factors limit CART cell function in solid tumours[J].Nature,2019,567(7749):530-534.
[31] SEO H,CHEN J,GONZALEZ-AVALOS E,et al.TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+T cell exhaustion[J].Proceedings of the National Academy of Sciences,2019,116(25):12410-12415.
[32] FRANCO F,JACCARD A,ROMERO P,et al.Metabolic and epigenetic regulation of T-cell exhaustion[J].Nature Metabolism,2020,2(10):1001-1012.
[33] DE PALMA M,BIZIATO D,PETROVA TV.Microenvironmental regulation of tumour angiogenesis[J].Nature Reviews Cancer,2017,17(8):457-474.
[34] WARBURG O.The metabolism of carcinoma cells[J].The Journal of Cancer Research,1925,9(1):148-163.
[35] ELIA I,ROWE JH,JOHNSON S,et al.Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+T cells[J].Cell Metabolism,2022,34(8):1137-1150.e6.
[36] ANDREJEVA G,RATHMELL JC.Similarities and distinctions of cancer and immune metabolism in inflammation and tumors[J].Cell Metabolism,2017,26(1):49-70.
[37] LEONE RD,POWELL JD.Metabolism of immune cells in cancer[J].Nature Reviews Cancer,2020,20(9):516-531.
[38] TEIJEIRA A,GARASA S,ETXEBERRIA I,et al.Metabolic consequences of T-cell costimulation in anticancer immunity[J].Cancer Immunology Research,2019,7(10):1564-1569.
[39] 乔万佳,刘小军.T细胞糖代谢重编程与抗肿瘤免疫治疗的研究进展[J].中国肿瘤生物治疗杂志,2022,29(01):75-79. QIAO WJ,LIU XJ.Research progress of T cell glucose metabolism reprogramming and antitumor immunotherapy[J].Chin J Tumor Biotherapy,2022,29(01):75-79.
[40] NAGAO A,KOBAYASHI M,KOYASU S,et al.HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance[J].International Journal of Molecular Sciences,2019,20(2):238.
[41] RICCIARDI S,MANFRINI N,ALFIERI R,et al.The translational machinery of human CD4+T cells is poised for activation and controls the switch from quiescence to metabolic remodeling[J].Cell Metabolism,2018,28(6):895-906.e5.
[42] REINFELD BI,RATHMELL WK,KIM TK,et al.The therapeutic implications of immunosuppressive tumor aerobic glycolysis[J].Cellular & Molecular Immunology,2022,19(1):46-58.
[43] GUPTA SS,WANG J,CHEN M.Metabolic reprogramming in CD8+T cells during acute viral infections[J].Frontiers in Immunology,2020,11:1013.
[44] SUZUKI J,NABE S,YASUKAWA M,et al.Glutamine regulates the antitumor activity of CD8 T cells[J].Cancer & Chemotherapy,2020,47(1):11-15.
[45] WANG J,LING R,ZHOU Y,et al.SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway[J].Oncology Letters,2020,20(3):2855-2869.
[46] 王文秋,侯诗源,韩明伟,等.内皮细胞和T细胞的代谢重编程及慢性炎症潜在治疗靶点研究进展[J].细胞与分子免疫学杂志,2021,37(11):1038-1044. WANG WQ,HOU SY,HAN MW,et al.Metabolic reprogramming of endothelial cells and T cells and potential therapeutic targets for chronic inflammation[J].Cellular and Molecular Immunology Journal,2021,37(11):1038-1044.
[47] XU K,YIN N,PENG M,et al.Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity[J].Science,2021,371(6527):405-410.
[48] ZHAI L,BELL A,LADOMERSKY E,et al.Immunosuppressive IDO in cancer:mechanisms of action,animal models,and targeting strategies[J].Frontiers in Immunology,2020,11:01185.
[49] BAHRAMBEIGI S,SHAFIEI-IRANNEJAD V.Immune-mediated anti-tumor effects of metformin;targeting metabolic reprogramming of T cells as a new possible mechanismfor anti-cancer effects of metformin[J].Biochemical Pharmacology,2020,174:113787.
[50] WANG P,ZHANG Q,TAN L,et al.The regulatory effects of mTOR complexes in the differentiation and function of CD4+T cell subsets[J].Journal of Immunology Research,2020,2020:3406032.
[51] PENA-ASENSIO J,CALVO H,TORRALBA M,et al.Anti-PD-1/PD-L1 based combination immunotherapy to boost antigen-specific CD8+T cell response in hepatocellular carcinoma[J].Cancers,2021,13(8):1922.
[52] QIN Q,LI B.Pembrolizumab for the treatment of nonsmall cell lung cancer:Current status and future directions[J].Journal of Cancer Research and Therapeutics,2019,15(4):743-750.
[53] ZHULAI G,OLEINIK E.Targeting regulatory T cells in anti-PD-1/PD-L1 cancer immunotherapy[J].Scandinavian Journal of Immunology,2022,95(3):e13129.
[54] SMITHY JW,FALECK DM,POSTOW MA.Facts and hopes in prediction,diagnosis,and treatment of immune-related adverse events[J].Clinical Cancer Research,2022,28(7):1250-1257.
[55] KLICHINSKY M,RUELLA M,SHESTOVA O,et al.Human chimeric antigen receptor macrophages for cancer immunotherapy[J].Nature Biotechnology,2020,38(8):947-953.
[56] SCHUSTER SJ,BISHOP MR,TAM CS,et al.Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma[J].New England Journal of Medicine,2019,380(1):45-56.
[57] BLANK CU,HAINING WN,HELD W,et al.Defining "T cell exhaustion"[J].Nature Reviews Immunology,2019,19(11):665-674.
[58] YOST KE,SATPATHY AT,WELLS DK,et al.Clonal replacement of tumor-specific T cells following PD-1 blockade[J].Nature Medicine,2019,25(8):1251-1259.
[59] YATES KB,TONNERRE P,MARTIN GE,et al.Epigenetic scars of CD8+T cell exhaustion persist after cure of chronic infection in humans[J].Nature Immunology,2021,22(8):1020-1029.
[60] 黄启钊,吴霞,王志明,等.肿瘤引流淋巴结抗原特异性记忆CD8+T细胞是PD-1/PD-L1免疫检查点阻断治疗的关键响应者[J].科学通报,2022,67(35):4152-4154. HUANG QZ,WU X,WANG ZM,et al.Antigen-specific memory CD8+T cells in tumor drainage lymph nodes are key responders to PD-1/PD-L1 immune checkpoint blocking therapy[J].Chinese Science Bulletin,2022,67(35):4152-4154.
[61] HUANG Q,WU X,WANG Z,et al.The primordial differentiation of tumor-specific memory CD8+T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes[J].Cell,2022,185(22):4049-4066.e25.

Memo

Memo:
山东省自然科学基金项目(编号:ZR2021LZY029)
Last Update: 1900-01-01