[1]SUZUKI K.Overview of deep learning in medical imaging[J].Radiological Physics and Technology,2017,10(3):257-273.
[2]耿新,成睿,吉宏明.人工智能在神经外科领域的应用进展[J].中华神经外科杂志,2020,36(7):748-751.
GENG X,CHENG R,JI HM.Progress in the application of artificial intelligence in neurosurgery[J].Chinese Journal of Neurosurgery,2020,36(7):748-751.
[3]CARLSON ML,INGELFINGER JR,LINK MJ.Vestibular schwannomas[J].New England Journal of Medicine,2021,384(14):1335-1348.
[4]SASAKI T,SHONO T,HASHIGUCHI K,et al.Histological considerations of the cleavage plane for preservation of facial and cochlear nerve functions in vestibular schwannoma surgery[J].J Neurosurg,2009,110(4):648-655.
[5]CAREY GE,JACOBSON CE,WARBURTON AN,et al.Machine learning for vestibular schwannoma diagnosis using audiometrie data alone[J].Otol Neurotol,2022,43(5):e530-e534.
[6]WINDISCH P,WEBER P,FURWEGER C,et al.Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices[J].Neuroradiology,2020,62(11):1515-1518.
[7]CHAKRABARTY S,SOTIRAS A,MILCHENKO M,et al.MRI-based identification and classification of major intracranial tumor types by using a 3D convolutional neural network:A retrospective multi-institutional analysis[J].Radiology Artificial Intelligence,2021,3(5):e200301.
[8]江华,于同刚,吴丽琼,等.基于AlexNet的桥小脑角脑膜瘤和听神经瘤MRI图像的识别研究[J].中国医疗器械信息,2022,28(1):44-47.
JIANG H,YU TG,WU LQ,et al.MRI image recognition of cerebellopontine angle meningioma and acoustic neuroma based on alexNet[J].China Medical Device Information,2022,28(1):44-47.
[9]娄云重,刘颖,江华,等.基于MRI和深度学习的桥小脑角区脑膜瘤与听神经瘤分类算法研究[J].波谱学杂志,2020,37(3):300-310.
LOU YC,LIU Y,JIANG H,et al.A deep learning algorithm for classifying meningioma and auditory neuroma in the cerebellopontine angle from magnetic resonance images[J].Chinese Journal of Magnetic Resonance,2020,37(3):300-310.
[10]刘颖,陈静聪,胡小洋,等.基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J].波谱学杂志,2021,38(1):58-68.
LIU Y,CHEN JC,HU XY,et al.Classification and localization of meningioma and acoustic neuroma in cerebellopontine angle based on mask RCNN[J].Chinese Journal of Magnetic Resonance,2021,38(1):58-68.
[11]PROFANT O,BURES Z,BALOGOVA Z,et al.Decision making on vestibular schwannoma treatment:Predictions based on machine-learning analysis[J].Scientific Reports,2021,11(1):18376.
[12]GADOT R,ANAND A,LOVIN BD,et al.Predicting surgical decision-making in vestibular schwannoma using tree-based machine learning[J].Neurosurgical Focus,2022,52(4):E8.
[13]ITOYAMA T,NAKAURA T,HAMASAKI T,et al.Whole tumor radiomics analysis for risk factors associated with rapid growth of vestibular schwannoma in contrast-enhanced T1-weighted images[J].World Neurosurg,2022,166:e572-e582.
[14]LIU Z,WANG S,DONG D,et al.The applications of radiomics in precision diagnosis and treatment of oncology:Opportunities and challenges[J].Theranostics,2019,9(5):1303-1322.
[15]KANZAKI J,TOS M,SANNA M,et al.New and modified reporting systems from the consensus meeting on systems for reporting results in vestibular schwannoma[J].Otol Neurotol,2003,24(4):8-9,642-648.
[16]SHAPEY J,WANG G,DORENT R,et al.An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI[J].J Neurosurg,2019,134(1):171-179.
[17]LEE WK,WU CC,LEE CC,et al.Combining analysis of multi-parametric MR images into a convolutional neural network:Precise target delineation for vestibular schwannoma treatment planning[J].Artificial Intelligence in Medicine,2020,107:101911.
[18]LEE CC,LEE WK,WU CC,et al.Applying artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery[J].Scientific Reports,2021,11(1):3106.
[19]GEORGE-JONES NA,WANG K,WANG J,et al.Automated detection of vestibular schwannoma growth using a two-dimensional U-Net convolutional neural network[J].Laryngoscope,2021,131(2):E619-E624.
[20]YAO P,SHAVIT SS,SHIN J,et al.Segmentation of vestibular schwannomas on postoperative gadolinium-enhanced T1-weighted and noncontrast T2-weighted magnetic resonance imaging using deep learning[J].Otol Neurotol,2022,43(10):1227-1239.
[21]CASS ND,LINDQUIST NR,ZHU Q,et al.Machine learning for automated calculation of vestibular schwannoma volumes[J].Otol Neurotol,2022,43(10):1252-1256.
[22]ZHANG Z,ZHANG X,YANG Y,et al.Accurate segmentation algorithm of acoustic neuroma in the cerebellopontine angle based on ACP-TransUNet[J].Frontiers in Neuroscience,2023,17:1207149.
[23]YANG HC,WU CC,LEE CC,et al.Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after Gamma Knife radiosurgery based on preradiosurgical MR radiomics[J].Radiotherapy and Oncology,2021,155:123-130.
[24]HUANG CY,PENG SJ,WU HM,et al.Quantification of tumor response of cystic vestibular schwannoma to Gamma Knife radiosurgery by using artificial intelligence[J].J Neurosurg,2021,2021:1-9.
[25]GEORGE-JONES NA,WANG K,WANG J,et al.Prediction of vestibular schwannoma enlargement after radiosurgery using tumor shape and MRI texture features[J].Otol Neurotol,2021,42(3):e348-e354.
[26]SONG D,ZHAI Y,TAO X,et al.Prediction of blood supply in vestibular schwannomas using radiomics machine learning classifiers[J].Scientific Reports,2021,11(1):18872.
[27]CHA D,SHIN SH,KIM SH,et al.Machine learning approach for prediction of hearing preservation in vestibular schwannoma surgery[J].Scientific Reports,2020,10(1):7136.
[28]DIXON PR,WOJDYLA L,LEE J,et al.Machine learning to predict hearing preservation after middle cranial fossa approach for sporadic vestibular schwannomas[J].Otol Neurotol,2022,43(9):1072-1077.
[29]WANG J.Prediction of postoperative recovery in patients with acoustic neuroma using machine learning and SMOTE-ENN techniques[J].Mathematical Biosciences and Engineering,2022,19(10):10407-10423.
[30]YU Y,SONG G,ZHAO Y,et al.Prediction of vestibular schwannoma surgical outcome using deep neural network[J].World Neurosurg,2023,176:e60-e67.
[31]GERGANOV VM,KLINGE PM,NOURI M,et al.Prognostic clinical and radiological parameters for immediate facial nerve function following vestibular schwannoma surgery[J].Acta Neurochirurgica,2009,151(6):7,581-587.
[32]DANG S,MANZOOR NF,CHOWDHURY N,et al.Investigating predictors of increased length of stay after resection of vestibular schwannoma using machine learning[J].Otol Neurotol,2021,42(5):e584-e592.
[33]ABOUZARI M,GOSHTASBI K,SARNA B,et al.Prediction of vestibular schwannoma recurrence using artificial neural network[J].Laryngoscope Investigative Otolaryngology,2020,5(2):278-285.