[1]SIEGEL RL,MILLER KD,FUCHS HE,et al.Cancer statistics,2022 [J].CA Cancer J Clin,2022,72(1):7-33.
[2]YU FH,WANG JX,YE XH,et al.Ultrasound-based radiomics nomogram:A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer[J].Eur J Radiol,2019,119:108658.
[3]许永波,李高峰,孙芳,等.剪切波弹性成像技术鉴别良恶性乳腺结节的Logistic回归分析 [J].现代肿瘤医学,2021,29(17):3097-3100.
XU YB,LI GF,SUN F,et al.Logistic regression analysis of shear wave elastography in differential diagnosis of breast lesions [J].Modern Oncology,2021,29(17):3097-3100.
[4]BEVILACQUA JL,KATTAN MW,FEY JV,et al.Doctor,what are my chances of having a positive sentinel node? A validated nomogram for risk estimation [J].J Clin Oncol,2007,25(24):3670-3679.
[5]孙彦,雷玉涛,崔立刚,等.乳腺癌前哨淋巴结超声造影术前应用的临床研究 [J].中国超声医学杂志,2020,36(06):488-491.
SUN Y,LEI YT,CUI LG,et al.Preoperative application of contrast-enhanced ultrasound in sentinel lymph nodes of breast cancer [J].Chinese Journal of Ultrasound in Medicine,2020,36(06):488-491.
[6]KATARIA K,SRIVASTAVA A,QAISER D.What is a false negative sentinel node biopsy:definition,reasons and ways to minimize it[J].Indian J Surg,2016,78(5):396-401.
[7]ZHENG Y,BAI L,SUN J,et al.Diagnostic value of radiomics model based on gray-scale and contrast-enhanced ultrasound for inflammatory mass stage periductal mastitis/duct ectasia [J].Front Oncol,2022,12:981106.
[8]YANG J,WANG T,YANG L,et al.Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method [J].Sci Rep,2019,9(1):4429.
[9]ZHANG J,LI L,ZHE X,et al.The diagnostic performance of machine learning-based radiomics of DCE-MRI in predicting axillary lymph node metastasis in breast cancer:A Meta-analysis [J].Front Oncol,2022,12:799209.
[10]文洁,王猛,刘周,等.基于MRI放射组学模型预测乳腺癌腋窝淋巴结转移状态的初步研究 [J].现代肿瘤医学,2023,31(03):506-512.
WEN J,WANG M,LIU Z,et al.Prediction of axillary lymph node metastatic state in breast cancer with mass like enhancement by MRI radiomics-based model [J].Modern Oncology,2023,31(03):506-512.
[11]MURATA T,WATASE C,SHIINO S,et al.Development and validation of a pre-and intra-operative scoring system that distinguishes between non-advanced and advanced axillary lymph node metastasis in breast cancer with positive sentinel lymph nodes:a retrospective study [J].World Journal of Surgical Oncology,2022,20(1):314.
[12]TANG Y,CHE XL,WANG WJ,et al.Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer [J].Med Phys,2022,49(12):7555-7566.
[13]NICOSIA L,PESAPANE F,BOZZINI AC,et al.Prediction of the malignancy of a breast lesion detected on breast ultrasound:radiomics applied to clinical practice [J].Cancers (Basel),2023,15(3):964.
[14]BICKELHAUPT S,PAECH D,KICKINGEREDER P,et al.Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography [J].J Magn Reson Imaging,2017,46(2):604-616.
[15]BRAMAN NM,ETESAMI M,PRASANNA P,et al.Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].Breast Cancer Res,2017,19(1):57.
[16]HUANG X,MAI J,HUANG Y,et al.Radiomic nomogram for pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer:predictive value of staging contrast-enhanced CT [J].Clinical Breast Cancer,2021,21(4):e388-e401.
[17]CHITALIA RD,KONTOS D.Role of texture analysis in breast MRI as a cancer biomarker:A review [J].J Magn Reson Imaging,2019,49(4):927-938.
[18]WEI X,YAN XJ,GUO YY,et al.Machine learning-based gray-level co-occurrence matrix signature for predicting lymph node metastasis in undifferentiated-type early gastric cancer [J].World J Gastroenterol,2022,28(36):5338-5350.
[19]ZHANG H,HUNG CL,MIN G,et al.GPU-accelerated GLRLM algorithm for feature extraction of MRI [J].Sci Rep,2019,9(1):10883.
[20]WANG Y,LIU W,YU Y,et al.CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer [J].European Radiology,2020,30(2):976-986.