[1]DING H,XIA W,ZHANG L,et al.CT-based deep learning model for invasiveness classification and micropapillary pattern prediction within lung adenocarcinoma[J].Front Oncol,2020,10:1186.
[2]LZZA B,XLF C,DI D,et al.A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0[J].Radiotherapy and Oncology,2020,151:1-9.
[3]PENG H,DONG D,FANG M,et al.Prognostic value of deep learning PET/CT-based radiomics:Potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma[J].Clinical Cancer Research,2019,25(14):4271-4279.
[4]GILLIES RJ,KINAHAN PE,HRICAK H.Radiomics:Images are more than pictures,they are data[J].Radiology,2016,278(2):563-577.
[5]ZANG QC,SUN CL.Spatially resolved metabolomics combined with multicellular tumor spheroids to discover cancer tissue relevant metabolic signatures[J].Analytica Chimica Acta,2021,1155:338342.
[6]NKHALI LAMYAA,THUREAU SEBASTIEN,EDET-SANON AGATHEE,et al.FDG-PET/CT during concomitant chemo radiotherapy for esophageal cancer:Reducing target volumes to deliver higher radiotherapy doses[J].Acta Oncologica,2015,54(6):909-915.
[7]LAMBIN P,RIOS-VELAZQUEZ,LEIJENAAR R,et al.Radiomics:Extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.
[8]BEUKINGA RJ,HULSHOFF JB,VAN DIJK LV,et al.Predicting response to neoadjuvant chemoradiotherapy in esophageal cancer with textural features derived from pretreatment 18F-FDG PET/CT imaging[J].J Nucl Med,2017,58(5):723-729.
[9]VIGNATI A,MAZZETTI S,GIANNINI V,et al.Texture features on T2-weighted magnetic resonance imaging:new potential biomarkers for prostate cancer aggressiveness[J].Phys Med Biol,2015,60(7):2685-2701.
[10]GUO Z,SHU Y,ZHOU H,et al.Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment[J].Carcinogenesis,2015,36(3):307-317.
[11]WIBMER A,HRICAK H,GONDO T,et al.Haralick texture analysis of prostate MRI:utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores[J].Eur Radiol,2015,25(10):2840-2850.
[12]VALLIERES M,FREEMAN CR,SKAMENE SR,et al.A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities[J].Phys Med Biol,2015,60(14):5471-5496.
[13]COROLLER TP,GROSSMANN P,HOU Y,et al.CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J].Radiother Oncol,2015,114(3):345-350.
[14]HOU Z,REN W,LI S,et al.Radiomic analysis in contrast-enhanced CT:predict treatment response to chemoradiotherapy in esophageal carcinoma[J].Oncotarget,2017,8(61):104444-104454.
[15]KUMAR V,GU Y,BASU S,et al.Radiomics:the process and the challenges[J].Magn Reson Imaging,2012,30(9):1234-1248.
[16]GARRIDO-LAGUNA I,HIALGO M.Pancreatic cancer:from state-of-the-ART treatments to promising novel therapies[J].Nat Rev Clin Oncol,2015,12(6):319-334.
[17]AL-KADI OS,WATSON D.Texture analysis of aggressive and nonaggressive lung tumor CE CT images[J].IEEE Trans Biomed Eng,2008,55(7):1822-1830.
[18]CUNLIFE A,ARMATO SG,CASTILLO R,et al.Lung texture inserial thoracic computed tomography scans:correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development[J].Int J Radiat Oncol Biol Phys,2015,91(5):1048-1056.
[19]FAVE X,ZHANG L,YANG J,et al.Using pretreatment radiomics and delta-radiomics features to predict non-small cell lung cancer patient outcomes[J].Int J Radiat Oncol Biol Phys,2017,98(1):249.
[20]International Commission on Radiation Units and Measurements.Prescribing,recording and reporting photon beam therapy(Supplement to ICRU Report 50).ICRU report 62[R].United Kingdom:Oxford University Press,1999.
[21]International Commission on Radiation Units and Measurements.Prescribing,recording,and reporting photon-beam intensity-modulated radiation therapy(IMRT).ICRU report 83[J].Journal of the ICRU Volume,2010,10:1-106.
[22]GRIETHUYSEN JJMV,FEDOROV A,PARMAR C,et al.Computational radiomics system to decode the radiographic phenotype[J].Cancer Res,2017,77:104-107.
[23]YIP C,DAVNALL F,KOZARSKI R,et al.Assessment of changes in tumor heterogeneity following neoadjuvant chemotherapy in primary esophageal cancer[J].Dis Esophagus,2015,28(2):172-179.
[24]MACKIN D,FAVE X,ZHANG L,et al.Measuring computed tomography scanner variability of radiomics features[J].Invest Radiol,2015,50(11):757-765.
[25]KIM H,PARK CM,LEE M,et al.Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors:analysis of intra-and inter-reader variability and inter-reconstruction algorithm variability[J].PLoS One,2016,11(10):e0164924.
[26]SHAFIQ-UL-HASSAN M,ZHANG GG,LATIFI K,et al.Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels[J].Med Phys,2017,44(3):1050-1062.
[27]BERENGUER R,PASTOR-JUAN MDR,CANALES-VAZQUEZ J,et al.Radiomics of CT features may be nonreproducible and redundant:influence of CT acquisition parameters[J].Radiology,2018,288(2):407-415.
[28]NASIEF H,ZHENG C,SCHOTT D,et al.A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer[J].NPJ Precis Oncol,2019,4(3):25.
[29]SONG YS,PARK CM,LEE SM,et al.Reproducibility of histogram and texture parameters derived from intravoxel incoherent motion diffusion-weighted MRI of FN13762 rat breast carcinomas[J].Anticancer Res,2014,34(5):2135-2144.
[30]GANESHAN B,SKOGEN K,PRESSNEY I,et al.Tumour heterogeneity inoesophageal cancer assessed by CT texture analysis:preliminary evidence of an association with tumour metabolism,stage,and survival[J].Clin Radiol,2012,67:157-164.
[31]SHEN C,LIU ZY,WANG ZQ,et al.Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction[J].Transl Oncol,2018,11:815-824.
[32]YIP C,LANDAU D,KOZARSKI R,et al.Primary esophageal cancer:heterogeneity as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy[J].Radiology,2014,270:141-148.
[33]LARUE RTHM,KLAASSEN R,JOCHEMS A,et al.Pretreatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer[J].Acta Oncol,2018,57:1475-1481.
[34]YAN Z,ZHANG J,LONG H,et al.Correlation of CT texture changes with treatment response during radiation therapy for esophageal cancer:An exploratory study[J].PLoS One,2019,14(9):e0223140.