[1]TA D,KHAN M,ISHAQUE A,et al.Reliability of 3D texture analysis:A multicenter MRI study of the brain[J].Journal of Magnetic Resonance Imaging,2020,51(4):1200-1209.
[2] NAGANAWA S,KIM J,YIP S,et al.Texture analysis of T2-weighted MRI predicts SDH mutation in paraganglioma[J].Neuroradiology,2021,63(4):547-554.
[3] 许东,张文军,张学喜.MRI纹理参数对乳腺癌分子分型鉴别的初步探讨[J].中国中西医结合影像学杂志,2019,17(2):132-136.
XU D,ZHANG WJ,ZHANG XX.Preliminary study on the classification of molecular subtypes in breast cancer by the texture parameters[J].Chinese Imaging Journal of Integrated Traditional and Western Medicine,2019,17(2):132-136.
[4] 陈文静,牟玮,张文馨,等.MR动态增强图像纹理分析判断乳腺结节良恶性的价值[J].中国医学影像技术,2017,33(5):647-651.
CHEN WJ,MOU W,ZHANG WX,et al.Value of texture feature analysis of MRI dynamic contrast enhancement in diagnosis of benign and malignant breast nodules[J].Chinese Journal of Medical Imaging Technology,2017,33(5):647-651.
[5]WANG Y,LIAO X,XIAO F,et al.Magnetic resonance imaging texture analysis in differentiating benign and malignant breast lesions of breast imaging reporting and data system 4:A preliminary study[J].Journal of Computer Assisted Tomography,2020,44(1):83-89.
[6] HENDERSON S,PUEDIE C,MICHIE C,et al.Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer[J].European Radiology,2017,27(11):4602-4611.
[7]LAE EN,DAESUNG K,JU SE,et al.Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer[J].Radiology,2020,294(1):31-41.
[8]刘晓东,王新宇,宁刚.MRI影像组学术前预测乳腺浸润性导管癌Ki-67表达[J].中国医学影像技术,2022,38(2):210-214.
LIU XD,WANG XY,NING G.MRI radiomics for peroperative predicting Ki-67 expression of breast invasive ductal carcinoma[J].Chinese Journal of Medical Imaging Technology,2022,38(2):210-214.
[9] YANG JB,WANG T,YANG LF,et al.Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method[J].Scientific Reports,2019,9(1):4429-4440.
[10]MARINO MA,AVENDAO D,ZAPATA P,et al.Lymph node imaging in patients with primary breast cancer:Concurrent diagnostic tools[J].The Oncologist,2020,2(25):231-242.
[11]CUI X,WANG N,ZHAO Y,et al.Preoperative prediction of axillary lymph node metastasis in breast cancer using radiomics features of DCE-MRI[J].Scientific Reports,2019,9(1):2240-2248.
[12]张东蕾,钱银锋,李伟,等.影响乳腺癌腋窝淋巴结转移的因素分析及不同诊断方式的对比研究[J].中国临床医学影像杂志,2021,32(2):94-99.
ZHANG DL,QIAN YF,LI W,et al.Analysis of factors affecting axillary lymph node metastasis of breast cancer and comparative study of different diagnositic methods[J].Journal of China Clinic Medical Imaging,2021,32(2):94-99.
[13]薛梅,李静,车树楠,等.乳腺癌多模态磁共振影像特征与腋窝淋巴结转移的相关性研究 [J].磁共振成像,2020,11(07):540-545.
XUE M,LI J,CHE SN,et al.The correlation between multiparametric MR imaging characteristics of breast cancer and axillary lymph node metastasis[J].Chin J Magn Reson Imaging,2020,11(07):540-545.
[14]LIN YP,YIN WJ,YAN TT,et al.Site-specific relapse pattern of the triple negative tumors in Chinese breast cancer patients[J].BMC Cancer,2009,9(24):342-349.
[15]TAGLIAFICO AS,PIANA M,SCHENONE D,et al.Overview of radiomics in breast cancer diagnosis and prognostication[J].Breast,2020,2(49):74-80.
[16] LIU CL,DING J,SPUHLER K,et al.Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI[J].Journal of Magnetic Resonance Imaging,2019,49(1):131-140.
[17] LIU Z,FENG B,LI C,et al.Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics[J].Journal of Magnetic Resonance Imaging,2019,50(3):847-857.
[18] CHAI R,MA H,XU M,et al.Differentiating axillary lymph node metastasis in invasive breast cancer patients:A comparison of radiomic signatures from multiparametric breast MR sequences[J].Journal of Magnetic Resonance Imaging,2019,50(4):1125-1132.
[19]邢滔,陈基明,颜秀芳,等.MRI纹理分析预测乳腺癌腋窝淋巴结转移的价值[J].临床放射学杂志,2019,38(12):2290-2294.
XING T,CHEN JM,YAN XF,et al.The value of MRI texture analysis to predict axillary lymph node metastasis in breast cancer patients[J].J Clin Radiol,2019,38(12):2290-2294.
[20]单嫣娜,龚向阳,丁忠祥,等.动态增强MRI影像组学特征预测乳腺癌腋窝淋巴结转移的价值 [J].中华放射学杂志,2019,53(9):742-747.
SHAN YN,GONG XY,DING ZX,et al.Dynamic contrast-enhanced MRI radiomic features predict axillary lymph node metastasis of breast cancer[J].Chin J Radiol,2019,53(9):742-747.
[21]黄栎有,高先聪,尤传文.基于乳腺X线图像纹理特征建立机器学习模型在鉴别良恶性乳腺肿块中的价值[J].放射学实践,2021,36(4):480-483.
HUANG LY,GAO XC,YOU CW.Application of machine learning model based on the texture features on mammgraphy in the differeniation diagnosis of benign and malignant breast masses[J].Radiol Practice,2021,36(4):480-483.
[22] CHEN C,QIN Y,CHEN H,et al.A meta-analysis of the diagnostic performance of machine learning-based MRI in the prediction of axillary lymph node metastasis in breast cancer patients[J].Insights Imaging,2021,12(1):156-168.