[1]马丹丹,刘坤,齐晓伟.2018年全球癌症统计:乳腺癌发病和死亡人数统计[J].中华乳腺病杂志(电子版),2018,12(06):375.
MA DD,LIU K,QI XW.Global cancer statistics 2018:Incidence rate and mortality statistics of breast cancer[J].Chinese Journal of Breast Disease(Electronic Edition),2018,12(06):375.
[2]WANG F,YU ZG.Current status of breast cancer prevention in China[J].Chronic Diseases and Translational Medicine,2015,1(1):2-8.
[3]姚云清.新技术革命对现代医学发展的影响[J].西北医学教育,2004,12(S1):1-3.
YAO YQ.The influence of new technology revolution on the development of modern medicine[J].Northwest Medical Education,2004,12(S1):1-3.
[4]CHEN W,ZHENG R,BAADE PD,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132.
[5]FAN L,ZHENG Y,YU KD,et al.Breast cancer in a transitional society over 18 years:Trends and present status in Shanghai,China[J].Breast Cancer Res Treat,2009,117(2):409-416.
[6]GAO YT,SHU XO,DAI Q,et al.Association of menstrual and reproductive factors with breast cancer risk:Results from the Shanghai breast cancer study[J].Int J Cancer,2000,87(2):295-300.
[7]HOLMES JH,SACCHI L,BELLAZZI R,et al.Artificial intelligence in medicine AIME 2015[J].Artificial Intelligence in Medicine,2017,81:1-2.
[8]GINNEKEN B.Fifty years of computer analysis in chest imaging:Rule-based,machine learning,deep learning[J].Radiol Phys Technol,2017,10(1):23-32.
[9]MENDELSON EB.Artificial intelligence in breast imaging:Potentials and limitations[J].Am J Roentgenol,2019,212(2):293-299.
[10]罗凤,陈金鹰,李果村.人工智能技术在医学领域的应用分析[J].通信与信息技术,2018,236(06):27-28.
LUO F,CHEN JY,LI GC.Analysis of the application of artificial intelligence technology in the field of medicine[J].Communication and Information Technology,2018,236(06):27-28.
[11]HINTON GE,OSINDERO S,TEH YW.A fast learning algorithm for deep belief nets[J].Neural computation,2006,18(7):1527-1554.
[12]IVAKHNENKO AG.Polynomial theory of complex systems:IEEE trans syst man cybern[J].IEEE Transactions on Systems Man and Cybernetics,1971,1(4):364-378.
[13]COLE EB,ZHANG Z,MARQUES HS,et al.Impact of computer-aided detection systems on radiologist accuracy with digital mammography[J].Am J Roentgenol,2014,203(4):909-916.
[14]KOOI T,LITJENS G,VAN GINNEKEN B,et al.Large scale deep learning for computer aided detection of mammographic lesions[J].Medical Image Analysis,2017,35:303-312.
[15]FAZAL MI,PATEL ME,TYE J,et al.The past,present and future role of artificial intelligence in imaging[J].Eur J Radiol,2018,105:246-250.
[16]LIBERMAN L,ABRAMSON AF,SQUIRES FB,et al.The breast imaging reporting and data system:positive predictive value of mammographic features and final assessment categories[J].Am J Roentgenol,1998,171(1):35-40.
[17]SAMALA RK,CHAN HP,HADJIISKI LM,et al.Multi-task transfer learning deep convolutional neural network:Application to computer-aided diagnosis of breast cancer on mammograms[J].Phys Med Biol,2017,62(23):8894-8908.
[18]WANG J,YANG X,CAI H,et al.Discrimination of breast cancer with microcalcifications on mammography by deep learning[J].Scientific Reports,2016,6(5):1-4.
[19]ORTIZ-RODRIGUEZ JM,GUERRERO-MENDEZ C,MARTINEZ-BLANCO MDR,et al.Breast cancer detection by means of artificial neural networks[J].Advanced Applications for Artificial Neural Networks,2018(1):161-176.
[20]MOHAMED AA,BERG WA,PENG H,et al.A deep learning method for classifying mammographic breast density categories[J].Med Phys,2018,45(1):314-321.
[21]RODRíGUEZ-RUIZ A,KRUPINSKI E,MORDANG JJ,et al.Detection of breast cancer with mammography:Effect of an artificial intelligence support system[J].Radiology,2019,290(2):305-314.
[22]QI X,ZHANG L,CHEN Y,et al.Automated diagnosis of breast ultrasonography images using deep neural networks[J].Medical Image Analysis,2019,52:185-198.
[23]HAN S,KANG HK,JEONG JY,et al.A deep learning framework for supporting the classification of breast lesions in ultrasound images[J].Phys Med Biol,2017,62(19):7714-7728.
[24]CHIANG TC,HUANG YS,CHEN RT,et al.Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation[J].IEEE Trans Med Imaging,2019,38(1):240-249.
[25]ZHOU J,LUO L,DOU Q,et al.Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images[J].Journal of Magnetic Resonance Imaging,2019,50(4):1144-1151.
[26]GALLEGO-ORTIZ C,MARTEL AL.A graph-based lesion characterization and deep embedding approach for improved computer-aided diagnosis of nonmass breast MRI lesions[J].Medical Image Analysis,2019,51:116-124.
[27]HA R,MUTASA S,KARCICH J,et al.Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm[J].Journal of Digital Imaging,2019,32(2):276-282.
[28]HERENT P,SCHMAUCH B,JEHANNO P,et al.Detection and characterization of MRI breast lesions using deep learning[J].Diagn Interv Imaging,2019,100(4):219-225.
[29]HA R,CHIN C,KARCICH J,et al.Prior to initiation of chemotherapy,can we predict breast tumor response:Deep learning convolutional neural networks approach using a breast MRI tumor dataset[J].Journal of Digital Imaging,2019,32(5):693-701.
[30]IBRAHIM A,GAMBLE P,JAROENSRI R,et al.Artificial intelligence in digital breast pathology:Techniques and applications[J].The Breast,2020,49:267-273.
[31]LITJENS G,SáNCHEZ CI,TIMOFEEVA N,et al.Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis[J].Scientific Reports,2016,6(1):4986.
[32]EHTESHAMI BB,VETA M,JOHANNES VDP,et al.Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J].JAMA,2017,318(22):2199-2210.
[33]ZADEH SA,SEYYED MCSJ,MOHAMMADI Z.A novel and reliable computational intelligence system for breast cancer detection[J].Med Biol Eng Comput,2018,56(5):721-732.
[34]ARAUJO T,ARESTA G,CASTRO E,et al.Classification of breast cancer histology image using Convolutional Neural Networks[J].PLoS One,2017,12(6):e0177544.
[35]CABALLO M,PANGALLO DR,MANN RM,et al.Deep learning-based segmentation of breast masses in dedicated breast CT imaging:Radiomic feature stability between radiologists and artificial intelligence[J].Computers in Biology and Medicine,2020,118:103629.
[36]于观贞,魏培莲,陈颖,等.人工智能在肿瘤病理诊断和评估中的应用与思考[J].第二军医大学学报,2017,38(11):1349-1354.
YU GZ,WEI PL,CHEN Y,et al.Application and thinking of artificial intelligence in tumor pathological diagnosis and evaluation[J].Journal of the Second Military Medical University,2017,38(11):1349-1354.
[37]科学家使用人工智能改善早期乳腺癌诊断[J].健康管理,2017,11(10):9-10.
Scientists use artificial intelligence to improve the diagnosis of early breast cancer[J].Health Management,2017,11(10):9-10.
[38]MARIO C.Deep learning technology for improving cancer care in society:New directions in cancer imaging driven by artificial intelligence[J].Technology in Society,2020,60:101198.
[39]SECHOPOULOS I,MANN RM.Stand-alone artificial intelligence:The future of breast cancer screening[J].The Breast,2020,49:254-260.